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Myristica fragrans mace, an economically important traded spice is being adulterated with mace of
M. malabarica, a closely related species. Identification of the genuine mace from its adulterant is difficult
owing to the loss of diagnostic morphological characters on drying and storage. Four DNA barcoding loci
viz., rbcL, matK, psbA-trnH and Internal Transcribed Spacer (ITS) are compared to analyse Myristica
malabarica adulteration in traded Myristica fragrans mace samples. The potential of psbA-trnH as the best
barcode over other loci in authentication of M. fragrans mace was established by its amplification and
sequencing success, high interspecific variation and presence of polymorphic sites. Sixty polymorphic
sites and 9 indel regions in psbA-trnH locus specific to M. malabarica are found in three out of the five
market samples studied, thereby confirming the adulteration of traded M. fragrans mace with
M. malabarica.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The nutmeg tree, Myristica fragrans Houtt, is indigenous to
Moluccas in Indonesia but has been successfully grown in other
Asian countries such as India, Malaysia, Papua New Guinea, Sri
Lanka, and in the Caribbeans, namely Grenada. A range of com-
mercial products derived from the nutmeg tree of which the spices
e nutmeg (kernel) andmace or aril covering the seed - are themost
commonly known and widely traded; other products are their
essential oils, extracted oleoresins and nutmeg butter. Other
economically relevant Myristica species include M. argentea Warb.
which produces ‘Papuan’ nutmegs from Irian Jaya and Papua New
Guinea, and M. malabarica Lam. which produces ‘Bombay mace’
from India; both are used as adulterants of M. fragrans products.

Myristica genus is represented by 12 species in India, the
important ones are M. fragrans Houtt., M. malabarica Lam., M.
beddomei King etc. of which M. fragrans is the only cultivated spe-
cies. Introduced to India in the 18th century by the British, it is now
cultivated in parts of Kerala, Tamil Nadu and Karnataka (Sasikumar,
George, Saji, Rema, & Krishnamoorthy, 2013) in about 20,120 ha in
the country as per the estimate in the year 2015 (http://dasd.gov.in/
images/kerala/pdf_files/SPICES__AREA_PRODUCTION_AND_
PRODUCITIVTY_IN_INDIA.pdf). Apart from its use as a spice in food
(B. Sasikumar).
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industry mainly in seasoning of meat products and in sauces, soups
and baked goods, nutmeg is prized for its aromatic, therapeutic and
aphrodisiac properties since time immemorial (Agbogidi &
Azagbaekwe, 2010). Mace and nutmeg are also used in the per-
fumery and pharmaceutical industries. Though both seed andmace
have similar taste qualities; mace is more popular because of its
light orange colour in light coloured foods.

World trade in nutmeg (mace and kernel) along with cardamom
was 44,887 MT worth US$ 374,296 during 2015 (http://www.
trademap.org/tradestat/Country_SelProduct_TS.aspx). The
economical value coupled with its high cost has led to the fraud-
ulent adulteration of M. fragrans mace with its closely related
species M. malabarica by unscrupulous dealers.

Mace of M. malabarica, a common wild relative of the nutmeg,
also known as Bombay mace, is yellow in colour, lack aroma and is
of inferior quality mainly exploited as a natural dye source.
Morphological differentiation may be possible between the
genuine and adulterant commodity in fresh or whole form but
discrimination becomes difficult on sample drying, ageing and
powdering as they lose their characteristic morphological and
diagnostic features.

Physical and chemical methods are available for detecting
adulterations, mainly the synthetic ones, in food commodities.
Physical methods include analysis of macroscopic and microscopic
structural evaluation and other parameters like solubility and bulk
density (Dhanya & Sasikumar, 2010). Chemical methods involve
chromatographic techniques like High Performance Liquid
Myristica fragrans Houtt. using DNA barcoding, Food Control (2016),
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Table 1
Details of reference samples.

Species No. of sample Location of collection.

M. fragrans 3 Kozhikode, Kerala,India.
M. fragrans 1 Nagercoil, Tamil Nadu, India.
M. fragrans 1 Andaman and Nicobar Islands, India.
M. malabarica 1 Community Agro Biodiversity Center, M S Swaminathan Research Foundation, Wyanadu, Kerala,India.
M. malabarica 1 Nagercoil, Tamil Nadu, India.
M. malabarica 1 Ernakulam, Kerala,India.
M. malabarica 1 Kerala Forest Research Institute, Thrissur,Kerala, India.
M. malabarica 1 Kozhikode, Kerala, India.
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Chromatography (HPLC), spectroscopic methods like Nuclear
Magnetic Resonance Spectroscopy (NMR) and electrophoretic
methods like capillary electrophoresis that differentiates the sam-
ples based on their variation in chemical profile (Galimberti et al.,
2013). But molecular methods are dominant over other ap-
proaches due to their accuracy, effectiveness and non-dependence
on age, environmental factors, storage and processing conditions,
especially for the biological adulterants (Balachandran,
Mohanasundaram, & Ramalingam, 2015; Heubl, 2013). Authenti-
cation of commodities by DNA barcoding, a recently evolved mo-
lecular technique is gaining wide acceptance now over other DNA
based methods due to its universality (Galimberti et al., 2013) and
reliability (Heubl, 2013).

DNA barcoding employs short nucleotide stretches called barc-
odes that possess nucleotide variation to discriminate and identify
species (Hebert, Cywinska, Ball, & de Waard, 2003). The Con-
sortium of Barcode for Life (CBOL) has proposed rbcL coding for
large subunit of ribulose 1,5 bisphosphate and matK coding for
maturase as core barcodes, and psbA-trnH spacer and nuclear ITS
region as supplementary barcodes in plants. DNA barcoding has
been used to detect adulteration in different commodities like
medicinal plants (Ganie, Upadhyay, Das, & Sharma, 2015;
Newmaster, Grguic, Shanmughanadhan, & Ramalingam, 2013;
Srirama et al., 2010), tea (Stoeckle et al., 2011), olive oil (Kumar,
Kahlon & Chaudhary, 2011), spices like saffron (Gismondi, Fanali,
Labarga, Cailoa, & Canini, 2013), black pepper (Parvathy et al.,
2014), turmeric (Parvathy, Swetha, Sheeja, & Sasikumar, 2015),
cinnamon (Swetha, Parvathy, Sheeja, & Sasikumar, 2014), star anise
(Meizil et al., 2012) and members of family Lamiaceae (de Mattia
et al., 2011).

Here we attempted to test the potential of DNA barcoding as an
authentication tool for M. fragrans mace using the loci rbcL, matK,
psbA-trnH and ITS.
2. Materials and methods

2.1. Sample collection

Fresh leaves were collected from five samples ofM. fragrans and
M. malabarica from different locations (Table 1) to create a
Table 2
Primers used for PCR amplification.

Primer name Sequence (50-30)

rbcL af 50 ATG TCA CCA CAA ACA GAG ACT AAA GC3
rbcL ar 50 GTA AAA TCA AGT CCA CCG CG 30

matK 3F 50 CGT ACA GTA CTT TTG TGT TTA CGA G 30

matK 1R 50 ACC CAG TCC ATC TGG AAA TCT TGG TTC
psbA f 50GTT ATG CAT GAA CGT AAT GCTC 30

trnH R 30CGT AAC AAG GTT TCC GTA GGT GAA 50

ITS 4 50 TCC TCC GCT TAT TGA TAT GC 30

ITS 5A 30 CCT TAT CAT TTA GAG GAA GGA G 50
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reference database to authenticate the traded nutmeg mace. The
reference samples were identified by Dr. Rema J and Dr. Saji K.V.,
Principal Scientists, ICAR-Indian Institute of Spices Research, Koz-
hikode, Kerala, India. Five samples of traded nutmeg mace were
collected from different shops in Kozhikode, Kerala, India.

2.2. Genomic DNA isolation

Genomic DNA was isolated from 100 mg of the reference leaf
samples using Qiagen DNA easy kit (Qiagen, Germany) and from the
traded mace samples using the protocol developed in our lab. The
nutmeg mace samples were powdered and soaked in distilled
water overnight. The water was poured off and the mace sample
was sun dried. Two grams of the sample was homogenised using
15 ml of preheated extraction buffer (100 mM Tris (Sigma, USA)
(pH-8), 20 mM EDTA (Sigma, USA) (pH-8), 2 M sodium chloride
(Sigma, USA), 2% SDS (Himedia, Mumbai), 2% PVP (Sigma, USA), 1%
b-mercaptoethanol (Himedia, Mumbai) in a prechilled mortar and
pestle and transferred to oakridge tubes. The tubes were incubated
at 65 �C for 2 h with intermittent shaking. The tubes were brought
to room temperature by plunging in ice. One third volume of 6 M
potassium acetate (Himedia, Mumbai) solution was added and the
tubes were incubated in ice for 1 h. An equal volume of chloroform
(Merck, Germany):isoamylalcohol (Merck, Germany) (24:1) was
added to the tubes and centrifuged at 10,000 g for 15 min at 4 �C.
Chloroform:isoamylalcohol extraction was repeated once more,
aqueous phase transferred to fresh tubes and an equal volume of
30% polyethylene glycol 8000 (Sigma, USA) was added and tubes
were incubated in ice for 1 h. The tubes were centrifuged at
12,000 g for 20 min at 4 �C. The pellet was washed using 70%
ethanol, dried and dissolved in sterile nuclease free water.

2.3. PCR amplification and sequencing

Amplification of genomic DNA was carried out using universal
primers of the barcoding loci matK, rbcL, psbA-trnH and Internal
Transcribed Spacer (ITS) synthesized by Integrated DNA Technolo-
gies (IDT), (USA) (Table 2). The reactions were carried out in 50 ml
volume containing 20e50 ng genomic DNA, 1X Taq assay buffer
with 1.5 mMMgCl2 (Takara, Japan), 1mM dNTP mix (Takara, Japan),
Reference

0 Kress & Erickson, 2007

Vijayan & Tsou, 2010
30

Yang, Zhang, Liu, Zhang, & Ji, 2011

Abeysinghe, Wijhesinghe, Tachida, & Yoshda, 2009.
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Table 3
PCR conditions for the barcoding loci.

Reaction condition Locus

rbcL psbA-trnH ITS

Initial denaturation 95 �Ce4 min 94 �Ce3 min 94 �Ce5 min
Denaturation 94 �Ce30 s 94 �Ce1 min 94 �Ce1 min
Annealing 52.5 �Ce1 min 54.5 �Ce1 min 56 �Ce1 min
Extension 72 �Ce1 min 72 �Ce1 min 72 �Ce1 min
Final Extension 72 �Ce10 min 72 �Ce10 min 72 �Ce10 min
Number of cycles 35 35 40

Table 4
Average intraspecific and interspecific analysis of rbcL and psbA-trnH.

Distance rbcL psbA-trnH

All intraspecific distance 0.003 ± 0.002 0.057 ± 0.011
Coalescent depth 0.011 ± 0.004 0.166 ± 0.024
All interspecific distance 0.004 ± 0.002 0.771 ± 0.098
Minimum interspecific distance 0 0.748 ± 0.092
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1 pmol mL�1 of forward and reverse primers and 1.5 U Taq DNA
polymerase (Takara, Japan) in the Agilent Sure cycler 8800 ther-
mocycler. Temperature profiles were optimized by putting gradient
PCR for rbcL, psbA-trnH and ITS loci (Table 3). matK was amplified
following Stoeckele et al. (2010).

The amplified products were purified using QIA quick PCR pu-
rification kit (Qiagen, Germany) and bidirectionally sequenced at
Scigenom Labs, Cochin, Kerala, India.
2.4. Data analysis

Contigs were assembled from the forward and reverse se-
quences using Cap 3 software (Huang & Madan, 1999) and they
were queried against the nucleotide database of Genbank
employing the BLAST algorithm (Atschul et al., 1997) to confirm the
species identity. Sequences obtained for coding regions rbcL and
matK were translated using online tool Expasy (Gasteiger et al.,
2003) and the identity of the protein sequences were confirmed
by Protein Blast. The nucleotide sequences generated were depos-
ited in the Genbank database of NCBI.

Alignment of the obtained sequences were done using MUSCLE
algorithm (Edgar, 2004). Sequences were then trimmed using
Table 5
Polymorphic sites in psbA-trnH locus.

Species 2 3 4 6 7 9 11 12 17 1

M. fragrans T A C C T T T A T A
M. malabarica G C T T A C A C G C

Table 6
Polymorphic sites in psbA-trnH locus.

Species 81 82 83 84 86 89 90 91

M. fragrans T T T A A A A A
M. malabarica A A A C G G T G

Table 7
Polymorphic sites in psbA-trnH locus.

Species 142 147 150 155 157 158 159

M. fragrans A G A A A A T
M. malabarica C T G T T T A
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Bioedit (Hall, 1999) and further analysed in Mega 6 (Tamura,
Stecher, Peterson, Filipski, & Kumar, 2013). The genetic distances
were calculated using nucleotide model K2P from pairwise global
alignment in which gaps and missing data were removed by the
pairwise deletion option and the intraspecifc and interspecific
divergence were assessed. Wilcoxon two sample test was per-
formed to test the intraspecific and interspecific distance of bar-
code. A neighbor joining tree was constructed using the Kimura 2
parameter (K2P) with a bootstrap support of 1000 replications to
determine the confidence estimate of the tree. During the analysis
all the positions containing gaps and missing data were eliminated.

3. Results

3.1. DNA isolation, amplification and sequencing success

High quality genomic DNA was isolated from all samples.
Amplification was 100% successful in the tested barcoding loci
except for matK locus (66.67%). Amplicons of 600bp, 900bp, 750bp
and 450bp were obtained for rbcL, matK, ITS and psbA-trnH loci,
respectively (Supplementary file 1).

Sequencing was 100% successful for rbcL, psbA-trnH and ITS loci
but ITS locus generated mixed sequence data in most of the sam-
ples thus limiting its potential as a barcode. BLAST analysis of rbcL,
matK and psbA-trnH sequences showed maximum identity to the
respective locus of Myristica genus. Nucleotide sequences obtained
for rbcL, matK and psbA-trnH were submitted to Genbank database
of NCBI (KT367808, KT367809, KT380141, KT380142, KT445277,
KT445278). rbcL and matK sequences were translated to protein
sequences and they showed 100% identity to ribulose 1,5 bisphos-
phate and maturase sequences of genus Myristica.

The length of sequences obtained were in the range of 803-
866bp, 516-585bp and 204-397bp for matK, rbcL and psbA-trnH
sequences respectively.matKwas excluded from further analysis as
the locus failed to amplify in the traded mace samples. rbcL and
psbA-trnH sequences of the reference and market samples were
aligned and trimmed to a final length of 425bp and 217bp,
respectively.

3.2. Analysis of intraspecific and interspecific divergence

An ideal DNA barcode should have a higher interspecific diver-
gence than intraspecific divergence. The intraspecific divergence
9 20 38 41 49 54 56 57 75 77 80

C T A A C T A T A A
T C C G T C G A C T

108 109 111 112 120 121 124 134 139

G A C A A C A A C
A C A G C T C T T

160 165 168 169 177 178 180 181 198

C G A G C T G T C
A T G T T G T C T
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Table 8
Polymorphic sites in psbA-trnH locus.

Species 200 203 205 206 207 213 215

M. fragrans C C G G G G T
M. malabarica T T T T T T A

Table 11
Indels in psbA-trnH locuS.

Species 186 187 188 192 210

M. fragrans C A G A e

M. malabarica e e e e T
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was assessed by two parameters-all intraspecific distance (mean of
all intraspecific K2P distances between all samples collected within
each species with more than one representative) and maximum
intraspecific distance or coalescent depth (maximum intraspecific
distance within each species). Two parameters viz., all interspecific
distance (mean of all K2P distances between all species in the genus
with atleast two species) and minimum interspecific distance
(minimum interspecific distance within each genus with at least
two species) were calculated to determine the interspecific diver-
gence (Table 4).

Table 4 clearly indicates that the intraspecifc distance and coa-
lescent depth parameters of rbcL locus are greater than its inter-
specific distances. rbcL failed as a barcode as the intraspecific
distance was greater than interspecific distance, which is contra-
dictory to the ideal barcode criterion.

The interspecific variation of psbA-trnH sequences ofM. fragrans
and M. malabarica was less than the intrapecific distance parame-
ters (Table 4). The Wilcoxon two sample test also showed that the
interspecific distance of psbA-trnH was significantly higher than its
intraspecific distance (P < 0.0001) and the z value obtained was
5.710.Thus this locus meets the requirement of an ideal barcode.
The intraspecific variation exhibited by the reference species may
be due to the different locations from which they were collected.

3.3. Identification of polymorphic sites and phylogenetic analysis

psbA-trnH exhibited high sequence variation between
M. fragrans and M. malabarica species. Sixty polymorphic sites
(Tables 5e8) and 9 indels (positions 25-37, 44-47, 59-61, 101-103,
115-118, 171-174, 186-188, 192 and 210) were identified in the
alignment between these two species (Tables 9e11). Out of the five
market samples analysed, three showed SNPs and indels similar to
M. malabarica thus pointing to a possible substitution ofM. fragrans
with M. malabarica samples.

A neighbor joining tree constructed based on bootstrap support
of 1000 replicates clusteredM. fragrans and M. malabarica into two
well separated clades (Fig. 1). Two market samples clustered along
with M. fragrans proving its authenticity while three of them
clustered withM. malabarica further confirming the substitution of
M. fragrans mace with inferior quality M. malabarica mace.

4. Discussion

Spice authentication is a matter of primary concern due to
Table 10
Indels in psbA-trnH locus.

Species 59 60 61 101 102 103 1

M. fragrans e e e e e e e

M. malabarica G T C C T G G

Table 9
Indels in psbA-trnH locus.

Species 25 26 27 28 29 30 31 32

M. fragrans G G A A A A A A
M. malabarica e e e e e e e e
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globalization in trade. Adulteration of spices may be caused either
by default or design with closely related species to achieve
economical gain, leading to erosion of the biological property. High
value spices are often adulterated with their inferior substitutes
(Dhanya & Sasikumar, 2010). M. fragrans, used widely as a spice, is
often substituted with its counterfeit entity, M. malabarica. Even
though colour of the freshmace differ in the two species, red in case
ofM. fragrans and yellow in case ofM.malabarica, seasonedmace in
both the species are of same colour (yellow) and sensory discrim-
ination of the commodities is also difficult. This comes handy for
substituting or adulterating the genuine nutmeg mace with that of
M. malabarica. Even though there have been reports of adulteration
of nutmeg mace with that of M. malabarica mace, there was no
reliable tool to detect the adulteration.

DNA barcoding is a robust technique based on the amplification
of short nucleotide regions that are conserved at the species level
and has applications in food authentication (Galimberti et al., 2014;
Scarano & Rao, 2014), species identification, (Anvarkhah, Khajeh-
Hosseini, Mohassel, Panah, & Hashemi, 2013; Jiang et al., 2011),
biodiversity studies (Lahaye et al., 2008) etc. Preservation of the
barcode regions in the processed foods facilitates its use in quality
control, guaranteeing food safety and minimizing food piracy
(Barcaccia, Lucchin, & Cassandro, 2016). An ideal barcode should
fulfill the following criteria (i) easy to amplify and sequence, (ii) PCR
product size not exceeding 1kb (iii) possess high interspecific
variation than intraspecific variation (Wong, But, & Shaw, 2013).

In the present study rbcL, psbA-trnH and ITS loci showed 100%
amplification efficiency while traded samples failed to amplify
matK. Amplification failure of this locus has been reported earlier
also in spices like traded cinnamon bark (Swetha et al., 2014); mint,
thyme and rosemary (de Mattia et al., 2011).

ITS locus has been reported as an efficient barcode for authen-
tication in medicinal plants (Pang, Shi, Song, Chen & Chen, 2013;
Chen et al., 2010) but in the present study the contig sequences
could not be assembled from the forward and reverse reads
rendering it of no relevance. Also majority of the samples gave
mixed sequence data. The messy sequence data is attributable to
the presence of the gene in multiple copies due to incomplete
concerted evolution and simultaneous sequencing of these multi-
ple variants result in sequence data that cannot be further analysed
thereby limiting its application as a potential barcode candidate
(Holligsworth, 2011).

Though rbcL had high amplification and sequencing success, it
15 116 117 118 171 172 173 174

e e e A A A C
T T T e e e e

33 34 35 36 37 44 45 46 47

T G C A T e e e e

e e e e e T A T T
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Fig. 1. A consensus NJ tree constructed based on psbA-trnH sequences with a boot strap support of 1000 replicates.
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was not suitable for authentication as it showed low species reso-
lution and a higher intraspecific variation and absence of poly-
morphic sites. The low species resolution of rbcL locus is widely
reported in a number of species like Dalbergia (Bhagwat, Dholakia,
Kadoo, Balasundaran, & Gupta, 2015), Roscoea (Zhang, Duan, &
Zhou, 2014), Salvia (Wang et al., 2013), Gentiana (Wong et al.,
2013), Composonura (Newmaster, Fazekas, Steves, & Janovec,
2007) and family Lauraceae (Liu, Chen, Song, Zhang, & Chen,
2012). Intraspecific variation of rbcL was also reported (Little &
Jeanson, 2013).

psbA-trnH is one of the widely used barcoding loci in plants. It
has been used for discriminating Piper nigrum (Parvathy et al.,
2014), Ocimum species (Christina & Annamalai, 2014), Scutellaria
baicalensis (Guo,Wang, Su, Zhang & Zhou, 2011), Lonicera japonica
(Sun et al., 2011), Phyllanthus species (Srirama et al., 2010), me-
dicinal plants of Polygonaceae (Song et al., 2009), Illicium verum
(Meizil et al., 2012), Crocus sativus (Gismondi et al., 2013) etc. from
its adulterants.

In the present study, psbA-trnH was found to be the ideal locus
for distinguishing M. fragrans from M. malabarica. The length of
sequences obtained was shorter and was in the range reported by
Guo, Wang, Su, Zhang, and Zhou (2011) in Scutellaria species. The
interspecific variation of the locus was much higher than the
intraspecific variation thereby conforming to the criteria of an ideal
barcode. Geographical isolation resulting in intraspecific variations
in psbA-trnH locus was previously reported in Composonura genus
of Myristicaceae family (Newmaster et al., 2007) and Crocus sativus
(Gismondi et al., 2013).

Sixty polymorphic sites and 9 indels identified in the psbA-trnH
sequence alignment points to the high sequence variation of this
locus. Though indels in this locus are said to be non informative for
species discrimination as their occurrence does not correlate with a
Please cite this article in press as: Swetha, V. P., et al., Authentication of
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species (Zhang, Meng, Wen, & Rao, 2015), the indels observed here
were specific either to M. fragrans or M. malabarica.

The polymorphic sites in psbA-trnH locus can be employed to
develop species specific primers for M. malabarica in order to
facilitate its detection bypassing sequencing expense. These
primers can also be used by food safety agencies to screen samples
to check for its authenticity.

5. Conclusion

DNA barcoding was proved to be a successful tool for authen-
tication of M. fragrans. psbA-trnH locus detected M. malabarica
adulteration in three out of the five market samples analysed
thereby demonstrating the extent of adulteration in traded nutmeg
mace. The adoption of DNA barcoding as an authentication tool by
food safety agencies can safeguard the interests of both consumers
and traders.
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