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CHAPTER 1: INTRODUCTION
In recent years, the field of transcriptomics has emerged as a key area of genomics, enabling scientists to explore and understand gene activity at a molecular level. Transcriptomics refers to the comprehensive study of RNA transcripts produced by the genome under specific conditions, developmental stages, or in response to genetic mutations or environmental changes. It provides a snapshot of active genes and their expression levels, making it a valuable approach for uncovering molecular mechanisms, cellular responses, and functional roles of genes.
Among the available transcriptomic approaches, RNA sequencing (RNA-Seq) is a powerful next-generation sequencing (NGS) method that allows researchers to quantitatively and qualitatively assess RNA populations in a high-throughput manner. RNA-Seq facilitates the identification of differentially expressed genes (DEGs), discovery of novel transcripts, detection of alternative splicing events, and overall transcriptome profiling. This level of insight is critical for understanding gene regulation during biological processes such as development, disease progression, and response to treatments.
Project Overview
This project is focused on studying the differential gene expression (DGE) in Drosophila melanogaster (fruit fly) embryos to understand the molecular impact of a specific mutation. The biological model involves embryos carrying the P218 mutation in the faint sausage (fas) gene, which plays a vital role in embryonic morphogenesis and possibly pre-mRNA splicing. By comparing transcriptomic data between mutant embryos and wild-type controls, this study aims to elucidate the role of the fas gene in regulating early embryonic development through gene expression changes.
Objective of the Study
The primary objective of this project is to:
Identify and analyze differentially expressed genes (DEGs) between wild-type and P218 fas-mutant Drosophila embryos using RNA-Seq data, to understand the potential role of fas in pre-mRNA splicing and developmental regulation.
To achieve this, a complete bioinformatics pipeline was established that integrates multiple tools across different platforms.
Bioinformatics Workflow
The analysis began with gaining familiarity with Linux, a command-line based operating system commonly used in bioinformatics. Using the Linux terminal, we performed essential operations like data management and executed basic bioinformatics tools including BLAST for sequence similarity searches and annotation.
The core preprocessing of RNA-Seq data was conducted on the UseGalaxy.org platform, a web-based GUI that facilitates reproducible and user-friendly bioinformatics workflows. The pipeline steps included:
· FASTQC: Assessed the quality of raw sequencing reads
· Cutadapt and Trimmomatic: Removed adapters and trimmed low-quality regions
· HISAT2: Aligned the high-quality reads to the Drosophila melanogaster reference genome
· SAMtools: Converted and sorted alignment files (SAM/BAM formats)
· featureCounts: Generated a matrix of read counts mapped to annotated genes
Following data preprocessing, the count matrix was imported into R, where the statistical package DESeq2 was used for differential gene expression analysis. DESeq2 normalizes the data, estimates dispersions, and fits models to test for significant differences in expression between sample groups. This analysis outputs key results such as:
· Normalized gene expression values
· Log2 fold changes
· Adjusted p-values (FDR)
· Statistical visualizations including volcano plots, MA plots, and heatmaps
These results allow us to interpret which genes are significantly upregulated or downregulated in the mutant embryos compared to controls, thereby linking the fas gene mutation to specific transcriptomic effects.



Chapter 2: Theoretical Background
2.1 Introduction to Transcriptomics
Transcriptomics is the study of the complete set of RNA transcripts produced by the genome under specific circumstances or in a specific cell. It is a key subfield of functional genomics and provides insights into the patterns of gene expression. Unlike the static genome, the transcriptome is dynamic and reflects the cellular response to internal and external stimuli. By analyzing the transcriptome, researchers can determine when and where genes are turned on or off, revealing molecular mechanisms underlying development, differentiation, and disease.
The transcriptome includes all types of RNA, such as messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and non-coding RNAs. Among these, mRNA is often the main focus in transcriptomics studies because it represents the protein-coding genes that are actively expressed.
2.2 Central Dogma of Molecular Biology
[image: Central Dogma of Molecular Biology - GeeksforGeeks]At the heart of transcriptomics lies the central dogma of molecular biology, which describes the flow of genetic information within a biological system:

· DNA → RNA → Protein
Genes in the DNA are transcribed into RNA, and most of these RNAs are translated into proteins. Transcription is carried out by RNA polymerase, which produces a complementary RNA copy of a gene's DNA sequence. This RNA undergoes processing to become a mature mRNA, which is then translated into protein in the ribosome.
Understanding gene expression regulation at the transcriptional level is vital to comprehend how genes control the phenotype. Aberrations in these processes can lead to diseases, developmental issues, or altered cellular states. 
2.3 RNA-Seq: Technology Overview
RNA-Seq (RNA sequencing) is a powerful technique for transcriptome profiling. It utilizes next-generation sequencing (NGS) technologies to quantify and characterize the entire transcriptome.
Workflow Overview:
1. RNA Extraction: Total RNA is extracted from the sample.
2. Library Preparation: RNA is fragmented, converted into cDNA, and adapter-ligated.
3. Sequencing: The libraries are sequenced using platforms like Illumina.
4. Data Processing: Reads are aligned to a reference genome/transcriptome.
5. Quantification: Expression levels are quantified, followed by differential expression analysis.
RNA-Seq surpasses previous techniques like microarrays due to its high sensitivity, ability to detect novel transcripts, isoforms, and low-abundance genes.
2.4 Gene Expression and Regulation
Gene expression is tightly regulated and controlled by transcription factors, epigenetic marks, RNA-binding proteins, and splicing machinery. Several layers of control ensure that genes are expressed at the right time, place, and amount.
· Promoters and enhancers regulate transcription initiation.
· Alternative splicing generates multiple mRNA variants from a single gene.
· Post-transcriptional modifications (like polyadenylation, capping, and editing) influence mRNA stability and translatability.
· Non-coding RNAs, such as microRNAs, can silence gene expression post-transcriptionally.
Studying these elements through transcriptomics can reveal critical insights into gene function and disease mechanisms.
2.5 Alternative Splicing and the Role of fas Gene
One significant focus of the project is to understand the role of the faint sausage (fas) gene in pre-mRNA splicing during embryogenesis in Drosophila melanogaster. The fas gene has been implicated in the development of the nervous system and embryonic patterning. Mutations such as P218 in fas could potentially disrupt normal splicing, leading to downstream defects.
Alternative splicing allows a single gene to code for multiple proteins by rearranging exon combinations. This is especially vital during embryogenesis, where precise control of gene expression and isoform diversity is required.
Analyzing how the P218 mutation affects the transcriptome using RNA-Seq can highlight the fas gene’s contribution to developmental processes.
2.6 Differential Gene Expression (DGE) Analysis
Differential gene expression analysis is a critical step in transcriptomics that identifies genes with significant expression changes between two or more conditions — in this case, mutant versus wild-type embryos.
Key components of DGE analysis include:
· Read Count Generation: Using tools like featureCounts to quantify reads mapped to genes.
· Normalization: Adjusting for sequencing depth and RNA composition.
· Statistical Testing: Identifying genes with significant expression changes using tools like DESeq2 in R.
This analysis helps identify potential biomarkers, disease genes, or regulatory pathways affected by the fas mutation.
2.7 Visualization Techniques in Transcriptomics
Data visualization is crucial for interpreting complex RNA-Seq data. Some common plots include:
· Heatmaps: Show expression levels of genes across samples. Useful to identify clusters of co-expressed genes.
· Principal Component Analysis (PCA): A dimensionality reduction technique to explore sample similarity and variation.
· MA Plot: Displays log fold change against mean expression, useful for spotting differentially expressed genes.
· Volcano Plot: Highlights genes with both high statistical significance and large fold change.
These visualizations support biological interpretation and provide evidence of the underlying transcriptomic alterations.
2.8 Tools and Platforms in Transcriptomic Analysis
Numerous bioinformatics tools are involved in RNA-Seq preprocessing and analysis:
	Tool
	Function

	FastQC
	Quality control of raw reads

	Cutadapt
	Trimming adapter sequences

	Trimmomatic
	Quality-based read trimming

	HISAT2
	Alignment of reads to the reference genome

	SAMtools
	Handling and manipulating alignment files (SAM/BAM)

	featureCounts
	Counting mapped reads for each gene

	DESeq2
	Differential expression analysis in R


Many of these tools can be accessed via the Galaxy platform, which provides a user-friendly web-based interface for bioinformatics workflows.



Chapter 3: Fundamentals of Bioinformatics Tools
3.1 Introduction to Bioinformatics in Modern Biology
Bioinformatics is a multidisciplinary field that combines biology, computer science, mathematics, and statistics to process, analyze, and interpret complex biological data. In recent decades, the advent of high-throughput sequencing technologies such as RNA sequencing (RNA-Seq), whole-genome sequencing (WGS), and exome sequencing has revolutionized biological and biomedical research. As a result, massive volumes of data are being generated at an unprecedented scale, necessitating the use of computational tools and algorithms to derive meaningful insights.
In the context of transcriptomics—the study of the complete set of RNA transcripts produced by the genome—bioinformatics plays a central role. It allows for the comprehensive analysis of gene expression patterns under different biological conditions, enabling researchers to identify differentially expressed genes, biological pathways, and potential biomarkers. From raw sequence data to biological conclusions, bioinformatics forms the backbone of the entire analytical workflow.
The transcriptomic project undertaken during this internship relied heavily on several core bioinformatics tools and environments. These include:
· Linux: A powerful command-line operating system essential for handling large-scale biological data, running bioinformatics software, and automating processes via scripting.
· R programming: A statistical programming language that is widely used for data analysis and visualization, especially in gene expression studies using packages like DESeq2.
· Galaxy platform: A web-based platform that provides a user-friendly interface for bioinformatics tools, making it easier to run analyses without requiring advanced programming skills.
· DESeq2: A widely used R package for analyzing count-based RNA-Seq data and performing differential gene expression analysis.
· Other tools: Software such as FastQC, Trimmomatic, HISAT2, SAMtools, and FeatureCounts form the preprocessing and alignment backbone of RNA-Seq workflows.



3.2 Fundamentals of Linux for Bioinformatics
Linux is the foundation of most bioinformatics pipelines due to its open-source nature, stability, powerful command-line interface, and compatibility with virtually all major bioinformatics tools. In transcriptomics and other omics-based research, Linux provides a flexible and efficient environment for managing data, automating repetitive tasks, installing and running bioinformatics software, and handling large-scale sequence files.
3.2.1 Importance of Linux in Bioinformatics
Biological datasets, especially those derived from high-throughput sequencing experiments like RNA-Seq, often involve files that are several gigabytes in size. Graphical operating systems struggle with such data, while Linux excels in managing, processing, and analyzing it through command-line tools. Most bioinformatics tools, including HISAT2, SAMtools, and FeatureCounts, are designed for or run best in a Unix/Linux environment. Linux scripting also allows for process automation and reproducibility of complex pipelines.
3.2.2 Linux Fundamentals and Applications
3.2.2.1 Directory Navigation and Management
➤ View Current Path
[image: ]
➤ List Contents in a Directory
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➤ Create and Remove Directories
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➤ Navigate the File System
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3.2.2.2 File Operations
➤ Create Files
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➤ Move and Rename Files
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➤ Copy Files and Folders
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➤ Delete Files
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3.2.2.3 Viewing and Searching Files
➤ View File Contents
[image: ]
➤ Search Inside Files
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3.2.2.4 Sorting, Counting, and Word Utilities
➤ Sort and Save to New File
[image: ]
➤ Count Lines, Words, and Characters.
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3.2.2.5 File Compression and Decompression
➤ Compress Files Using gzip
[image: ]
➤ Decompress Files
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3.2.2.6 Shell Productivity Shortcuts
	Shortcut
	Description

	Ctrl + A
	Move to start of line

	Ctrl + E
	Move to end of line

	Ctrl + K
	Delete to end of line

	Ctrl + W
	Delete previous word

	Ctrl + C
	Terminate a command

	Ctrl + L
	Clear terminal

	Ctrl + R
	Reverse search through history

	Tab
	Auto-complete command or filename

	↑ / ↓
	Scroll through previous commands



3.2.2.7 Bash History and Recall
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3.3 Fundamentals of R Programming for Bioinformatics
R is a powerful, open-source programming language widely used in statistics, data analysis, and bioinformatics. Its extensive package ecosystem, especially those from Bioconductor, makes it the preferred tool for gene expression studies, including differential gene expression (DGE) analysis using RNA-Seq data.
During this internship, R was used for:
· Handling and cleaning count data
· Statistical modeling of differential expression using DESeq2
· Visualizing gene expression through plots like heatmaps, PCA, and volcano plots
This section introduces the fundamentals of R, the environment setup, core data structures, commonly used commands.
3.3.1 Getting Started with R
R programs can be written and executed using the R Console or IDEs such as RStudio, which offers a user-friendly interface for script writing, object viewing, and plotting.
[image: A black screen with white text
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Comments in R are made using the # symbol.
3.3.2 Variables and Data Types
	Data Type
	Description
	Example

	Numeric
	Real numbers
	x <- 10.5

	Integer
	Whole numbers with L suffix
	y <- 4L

	Character
	Text
	name <- "GeneA"

	Logical
	Boolean values
	flag <- TRUE

	Complex
	Complex numbers
	z <- 2 + 3i



[image: ]
3.3.3 Operators
	Operator Type
	Operators
	Example

	Arithmetic
	+, -, *, /, ^, %%
	10 %% 3 → 1

	Relational
	==, !=, >, <, >=
	x > y

	Logical
	&, `
	, !`

	Special
	:, %in%
	2 %in% c(1,2,3)
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3.3.4 Data Input and Output
	Function
	Purpose
	Example

	readline()
	Takes single user input
	x <- readline("Enter value: ")

	scan()
	Takes multiple values
	vals <- scan()

	read.csv()
	Reads dataset from CSV file
	data <- read.csv("file.csv")

	View()
	Opens spreadsheet view in IDE
	View(data)
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3.3.5 Mathematical and Statistical Functions
	Function
	Purpose
	Example
	Output

	round(x, n)
	Rounds to n decimal places
	round(3.14159, 2)
	3.14

	log10(x)
	Base-10 logarithm
	log10(1000)
	3

	mean()
	Mean of numeric vector
	mean(c(1,2,3))
	2

	sd()
	Standard deviation
	sd(c(1,2,3,4,5))
	1.58

	sample()
	Random sample from a vector
	sample(1:10, 3)
	Varies

	set.seed()
	Ensures reproducible random values
	set.seed(42)
	–



R offers built-in functions for mathematical and statistical calculations: [image: A screenshot of a computer
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Random number generation and sampling are also supported:
[image: A black background with white text
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3.3.6 Data Structures in R
a. Vectors
Vectors are 1D homogeneous data structures and are the most basic data type in R.
[image: A screen shot of a computer
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b. Lists
Lists can hold heterogeneous elements.
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c. Matrices and Arrays
Matrices are 2D homogeneous structures:
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Arrays can have more than 2 dimensions:
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d. Data Frames
Data frames are 2D heterogeneous tabular structures (like spreadsheets):
[image: A black background with white text
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e. Factors
Factors represent categorical data:
[image: A black screen with white text
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3.3.7 Control Structures
R supports conditional and iterative control structures.
[image: A computer screen shot of a program code
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3.3.8 Functions in R
Functions are used to encapsulate reusable code.
[image: A computer screen with white text and blue text
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3.3.9 Statistical Analysis and Hypothesis Testing
	Function
	Purpose
	Example

	mean()
	Average
	mean(c(1,2,3))

	median()
	Median
	median(c(1,2,3))

	sd()
	Standard Deviation
	sd(c(1,2,3))

	var()
	Variance
	var(c(1,2,3))

	summary()
	Summary stats
	summary(dataframe)



a. Descriptive Statistics
[image: A black background with white text
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b. Probability Distributions
	Function
	Distribution Type
	Example

	rnorm()
	Normal distribution
	rnorm(5, mean=0, sd=1)

	runif()
	Uniform distribution
	runif(5)

	rbinom()
	Binomial distribution
	rbinom(5, 10, 0.5)



[image: A black background with white text
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c. Hypothesis Testing
[image: ]
3.3.9 Base R Plotting with plot()
Base R's plot() function is a versatile tool to quickly visualize data.
	Parameter
	Description

	x, y
	Data vectors

	type
	Plot type: "p", "l", "b", etc.

	main
	Title of the plot

	xlab
	X-axis label

	ylab
	Y-axis label

	col
	Color of points or lines

	pch
	Point shape

	lty
	Line type (solid, dashed, etc.)



	Function
	Purpose

	points()
	Add more points

	lines()
	Add new lines

	abline()
	Add reference lines

	legend()
	Add legends

	text()
	Add labels



Types of Graphs in Base R
	Graph Type
	Function
	Description

	Scatter
	plot()
	Point graph of x vs y

	Line
	plot(type="l")
	Connects points with lines

	Histogram
	hist()
	Frequency distribution

	Bar Plot
	barplot()
	Heights of categories

	Boxplot
	boxplot()
	Median, IQR, and outliers

	Pie Chart
	pie()
	Proportional distribution

	Curve
	curve()
	Mathematical function plot
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a. Line Graph
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b. Histogram
[image: A black background with colorful text

AI-generated content may be incorrect.]
c. Bar Plot
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d. Pie Chart
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3.3.10 Advanced Plotting with ggplot2
ggplot2 follows the Grammar of Graphics and allows building plots layer by layer.
 Components of ggplot2
	Component
	Role
	Example

	data
	Dataset
	mtcars

	aes()
	Aesthetic mapping
	aes(x=mpg, y=wt)

	geom_*
	Plot type (point, line, bar, etc.)
	geom_point(), geom_line()

	facet_*
	Split plots by a factor
	facet_wrap(~cyl)

	theme_*
	Style the plot
	theme_minimal(), theme_bw()


🔹 Example: Scatter Plot	
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🔹 Common Geoms
	geom_* Function
	Description

	geom_point()
	Scatter plot

	geom_line()
	Line plot

	geom_bar()
	Bar plot

	geom_boxplot()
	Boxplot

	geom_histogram()
	Histogram

	geom_smooth()
	Add regression line



3.3.11 Plot Customization in ggplot2
	Function / Argument
	Description

	labs()
	Add title and axis labels

	scale_color_manual()
	Custom color mapping

	facet_wrap(~var)
	Split into panels by variable

	theme_minimal()
	Use minimalist theme

	aes(color=group)
	Color by grouping variable



Example: Grouped Boxplot
[image: ]
3.3.12 Data Manipulation with dplyr
dplyr simplifies data manipulation using intuitive functions called verbs.
	Function
	Purpose
	Example

	filter()
	Filter rows
	filter(df, value > 10)

	select()
	Select specific columns
	select(df, gene, expr)

	mutate()
	Create or modify columns
	mutate(df, log_expr = log2(expr))

	arrange()
	Sort rows
	arrange(df, desc(expr))

	summarise()
	Summarize values
	summarise(df, mean = mean(expr))

	group_by()
	Group before summarizing
	group_by(df, condition)


🔹 Example: Grouped Summary
[image: ]
3.3.13 Reshaping Data with tidyr
tidyr is used for tidy data formatting—reshaping, separating, combining columns.
	Function
	Purpose
	Example

	pivot_longer()
	Wide → Long format
	pivot_longer(df, cols=2:4)

	pivot_wider()
	Long → Wide format
	pivot_wider(df)

	separate()
	Split a column
	separate(df, col, into=c("gene", "type"))

	unite()
	Combine multiple columns
	unite(df, new, c(col1, col2))

	drop_na()
	Remove rows with missing data
	drop_na(df)



3.4: Galaxy Platform – Fundamentals and Usage
3.4.1 Introduction to Galaxy
Galaxy is a web-based, open-source platform designed to make computational biology accessible to researchers without requiring advanced programming skills. It provides a graphical user interface (GUI) where users can analyze data through pre-built bioinformatics tools and workflows. Galaxy is especially useful in transcriptomics studies due to its ability to perform quality control, read alignment, quantification, and more.
[image: ]
3.4.2 Key Features of Galaxy
	Feature
	Description

	Web-based Access
	Requires only a browser, no local installation

	Tool Integration
	Supports hundreds of tools (FastQC, Trimmomatic, HISAT2, etc.)

	Workflow System
	Allows chaining tools into reusable analysis pipelines

	Reproducibility
	Tracks full analysis history, parameters, and versions

	User-Friendly
	No command-line required; intuitive drag-and-drop interface

	Data Management
	Organizes datasets and results in histories



3.4.3 Role of Galaxy in Transcriptomic Analysis
In this internship project, Galaxy was used primarily for RNA-Seq preprocessing. The analysis steps carried out on Galaxy included:
1. Uploading raw FASTQ files
2. Performing quality control with FastQC
3. Trimming reads using Trimmomatic
4. Aligning reads to the reference genome using HISAT2
5. Generating count matrices using FeatureCounts
6. Exporting results for further analysis in R
[image: ]
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3.4.4 Galaxy Interface Components
	Panel
	Function

	Tool Panel
	Located on the left; lists available tools organized by category

	Main Panel
	Center area; displays forms, results, and tool outputs

	History Panel
	Right-hand side; shows all datasets, tool runs, and outputs for reproducibility
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3.4.5 Exporting Output for DESeq2 Analysis in R
Once read counts were obtained using FeatureCounts, the final count matrix file (usually .txt or .tabular) was downloaded from Galaxy and used as input for downstream analysis in R, especially for differential gene expression using DESeq2.
Steps:
· Click on dataset in history → “Download”
· Optionally convert .tabular to .csv or .txt using Galaxy’s convert tools or manually
3.4.6 Advantages of Galaxy Platform
	Feature
	Benefit

	No coding needed
	Great for beginners and life science researchers

	Traceable
	Maintains full record of parameters, tool versions, and datasets

	Community support
	Thousands of published workflows and public servers

	Built-in tools
	Hundreds of integrated tools for genomics and transcriptomics



3.4.7 Limitations Observed
	Limitation
	Description

	Tool version differences
	Some public Galaxy servers may use outdated tools

	Internet dependency
	Requires a stable internet connection unless Galaxy is installed locally

	Less flexible for scripting
	Custom advanced scripting is not directly supported

	Limited resource on public server
	Large datasets may take longer due to server load limitations






3.5 Bioinformatics Databases and Browsers
Bioinformatics databases and genome browsers are essential digital platforms that store, organize, and provide access to biological information such as DNA/RNA sequences, gene expression profiles, protein structures, and genome annotations. These resources play a vital role in genomic and transcriptomic studies by enabling researchers to retrieve relevant datasets, explore gene features, and verify expression data.
During this internship, several publicly available bioinformatics databases and expression browsers were used to access RNA-Seq datasets, explore gene annotations, download reference genomes, and interpret gene expression patterns. The following are the primary resources utilized:
3.5.1 ENA (European Nucleotide Archive)
· Website: https://www.ebi.ac.uk/ena
· Managed by: EMBL-EBI (European Molecular Biology Laboratory - European Bioinformatics Institute)
The ENA is a comprehensive repository of nucleotide sequence data from all domains of life. It supports raw sequencing submissions and makes them publicly available for research. It includes both raw reads (FASTQ) and annotated sequences (FASTA, GTF).
Usage in this project:
· The raw RNA-Seq datasets (ERR1659927, ERR1659930) were downloaded from the ENA browser.
· The platform provided metadata, sequencing platform info, sample conditions, and accession IDs required for downstream analysis.
· Example: Navigated to ENA → Search with accession number → Downloaded FASTQ files for analysis.
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3.5.2 EMBL-EBI (European Bioinformatics Institute)
· Website: https://www.ebi.ac.uk
· Purpose: A central hub offering multiple tools and databases for molecular biology, including ENA, Ensembl, Expression Atlas, InterPro, and more.
EMBL-EBI serves as the parent organization for several important bioinformatics resources. It provides freely accessible data services for DNA/RNA sequencing, protein functions, gene expression, and pathway analysis.
Usage in this project:
· Used as a gateway to access Expression Atlas and ENA.
· Supported genome browsing, annotation retrieval, and visualization of transcriptomic data.
· Used as the main source for navigating between related tools during gene expression interpretation.
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3.5.3 NCBI (National Center for Biotechnology Information)
· Website: https://www.ncbi.nlm.nih.gov
· Managed by: U.S. National Library of Medicine
NCBI hosts several biological databases including GenBank, GEO (Gene Expression Omnibus), RefSeq, and BLAST tools. It is widely used for sequence searches, gene annotation, reference genome downloads, and data cross-verification.
Usage in this project:
· Verified gene identifiers and annotation files for compatibility with RNA-Seq analysis.
· Explored gene features using Gene and Genome databases.
· Referred to BLAST tools when needed for sequence similarity checks.
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3.5.4 Expression Atlas
· Website: https://www.ebi.ac.uk/gxa
· Hosted by: EMBL-EBI
Expression Atlas provides information about gene and transcript expression levels across various biological conditions, tissues, and organisms. It integrates experimental data from RNA-Seq, microarrays, and proteomics studies.
Usage in this project:
· Used to explore expression levels of differentially expressed genes identified in our samples.
· Helped in confirming tissue-specific and condition-specific expression patterns.
· Provided visual plots of expression variation for selected genes.
Example: After DESeq2 analysis in R, genes like XYZ1 were checked in Expression Atlas for baseline expression in rice or Arabidopsis tissues.
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3.5.5 Ensembl Genome Browser
· Website: https://www.ensembl.org
· Hosted by: EMBL-EBI
The Ensembl Genome Browser allows users to view genome-wide data, including gene locations, exons, transcripts, and regulatory elements. It offers downloadable gene annotations (GTF files), protein coding data, and integrates information from multiple species.
Usage in this project:
· GTF annotation files required for FeatureCounts in Galaxy were downloaded from Ensembl.
· Gene ID mapping and chromosome locations were visualized and verified.
· Facilitated gene model understanding for accurate read counting.
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3.5.6 NCBI SRA (Sequence Read Archive)
· Website: https://www.ncbi.nlm.nih.gov/sra
· Managed by: National Center for Biotechnology Information (NCBI)
The Sequence Read Archive (SRA) is one of the world’s largest repositories of high-throughput sequencing data. It stores raw reads generated from next-generation sequencing (NGS) experiments submitted by researchers worldwide. The data are stored in formats such as FASTQ, and often come with associated metadata including sample origin, library preparation, and sequencing platform.
Usage in this project:
· Accessed to search and retrieve raw RNA-Seq datasets based on BioProject, BioSample, or Run accessions.
· For example, datasets like ERR1659927 and ERR1659930 were accessed through SRA.
· Provided direct download links and FASTQ conversion via ENA or SRA Toolkit.
📌 Example Process:
· Searched for a study or run ID on SRA
· Reviewed metadata (organism, condition, sequencing type)
· Retrieved download links for use in Galaxy or Linux-based workflows
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Chapter 4: Linux Techniques and Applications
4.1 Remote BLAST Execution via NCBI Using Linux Terminal
During the course of this project, remote BLAST functionality provided by NCBI was also utilized. This approach is especially useful in scenarios where users do not possess a local reference database or wish to save storage and computational resources. The remote BLAST option allows users to submit their queries directly to NCBI's BLAST servers from the Linux command line.
4.1.1 Preparation of Query Sequence
A nucleotide query sequence was created and saved in FASTA format using the terminal-based text editor nano. The steps followed were:
1. Opening a new file:
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2.Pasting the following sample sequence into the file:
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3. Saving the file by pressing Ctrl+O, then Enter, and exiting with Ctrl+X.
This process created a valid FASTA file named query.fasta, ready to be submitted for BLAST analysis.
4.1.2 Performing Remote BLAST using NCBI Servers
To run a remote BLAST search using the created query, the following command was executed from the terminal:
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Explanation of parameters:
	Parameter
	Description

	-query query.fasta
	Specifies the input file containing the query sequence.

	-db nt
	Uses the NCBI nucleotide database (nt) as the search database.

	-remote
	Instructs the tool to execute the BLAST search on NCBI’s remote servers.

	-out results.txt
	Saves the output in a local file named results.txt.

	-outfmt 0
	Generates output in the standard human-readable format (default).


This method requires an active internet connection but eliminates the need for downloading and maintaining large reference databases locally.


4.2 RNA-Seq Quality Assessment using FASTQC (ERR1659930 Sample)
FASTQC is a widely used quality control (QC) tool designed to evaluate high-throughput sequencing data, particularly in FASTQ format. Developed by Babraham Bioinformatics, it provides a quick overview of read quality and helps identify potential issues such as adapter contamination, sequence duplication, poor base quality, and GC bias.
RNA-Seq and other next-generation sequencing (NGS) workflows generate large volumes of data, where even subtle quality problems can affect downstream analyses like alignment, quantification, and differential expression. FASTQC addresses this by offering both summary statistics and detailed visualizations across multiple QC modules.
The tool is compatible with both single-end and paired-end sequencing data and can be executed via a graphical user interface (GUI) or from the command line, making it suitable for integration into automated pipelines. In this project, FASTQC was used in command-line mode within the Linux environment for assessing the quality of raw RNA-Seq reads.
Key features of FASTQC include:
· Rapid processing of FASTQ files
· Interactive HTML reports with modular results
· Warnings for potential quality issues
· Easy identification of contamination or technical artifacts
The insights provided by FASTQC are essential for making informed decisions about trimming, filtering, and overall data usability, thereby ensuring the integrity of downstream bioinformatics analyses.
4.2.1 Tools and Environment
The following command-line tools were used in this QC pipeline:
	Tool
	Purpose

	fasterq-dump
	To download .fastq files from NCBI SRA

	fastqc
	To assess sequence quality metrics



These tools were installed using the system package manager:
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Version verification commands:
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4.2.2 Directory Setup
A dedicated working directory was created to store the project-specific files:
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4.2.3 Downloading RNA-Seq Reads from NCBI
The paired-end reads for sample ERR1659930 were downloaded using the following command:
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This generated two .fastq files:
· ERR1659930_1.fastq – forward reads
· ERR1659930_2.fastq – reverse reads
4.2.4 Quality Assessment using FASTQC
To evaluate the quality of the raw reads, FASTQC was run on both FASTQ files:
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This produced the following outputs:
· ERR1659930_1_fastqc.html
· ERR1659930_2_fastqc.html
These .html files were then opened in a web browser for inspection:
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4.3 Linux Shell Scripting for Genomic Data Analysis.
The purpose of this section is to automate the analysis of genomic and sequencing data using a custom shell script named bio_analysis.sh. The script performs integrated operations on the following data types:
· Genomic sequences in FASTA format (genpme.fasta)
· Gene features in a GFF file (genome.gff)
· RNA-Seq data in FASTQ files located in a reads/ directory
The script also supports optional command-line flags to tailor the analysis scope and output reporting.
4.3.1 File and Directory Structure
Before executing the script, ensure the following directory layout is in place:
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4.3.2 Script Functionalities
The bio_analysis.sh script performs the following tasks:
	Step
	Functionality

	1
	Parse command-line arguments (--report, --only-genome)

	2
	Validate presence of required files

	3
	Count number of sequences and calculate genome statistics

	4
	Extract gene and CDS counts from GFF

	5
	Count reads in all .fastq files (unless --only-genome is specified)

	6
	Compile and output a summary

	7
	Optionally save the summary to a report file


4.3.3 The Shell Script: bio_analysis.sh
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4.3.4 Execution Instructions
Make the script executable:
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Example usage:
	Command
	Description

	./bio_analysis.sh
	Analyze genome, GFF, and FASTQ files in the current directory

	./bio_analysis.sh /path/to/data
	Analyze files in a specific directory

	./bio_analysis.sh --only-genome
	Skip FASTQ analysis, only analyze genome and GFF

	./bio_analysis.sh /path/to/data --report summary.txt
	Save summary to summary.txt





CHAPTER 5: Galaxy Platform and Preprocessing Workflow
5.1 Introduction to Galaxy Platform
Galaxy is an open-source, web-based platform designed to facilitate accessible, reproducible, and transparent computational research in life sciences. It enables researchers—especially those without advanced programming skills—to perform complex bioinformatics workflows through a graphical user interface. Galaxy provides built-in support for uploading data, selecting tools, customizing parameters, viewing intermediate outputs, and managing complete pipelines for NGS data analysis.
In the context of this RNA-Seq project, the Galaxy Europe server (https://usegalaxy.eu) was used to execute all preprocessing steps including quality check, adapter trimming, alignment, and read counting, preparing the data for downstream differential gene expression analysis in R.
Key Advantages of Galaxy Platform:
· No need for command-line knowledge
· Centralized tool repository
· Transparent workflows (easily documented) 
 5.2 Data Upload and Organization
· In this study, RNA-Seq data was utilized to investigate the role of the faint sausage (fas) gene in Drosophila melanogaster embryogenesis, specifically focusing on pre-mRNA splicing. The study centered on embryos harboring the P218 mutation in the fas gene, compared against wild-type controls. The fas gene is known to play a role in early neural development, and the P218 mutation is hypothesized to influence transcript splicing during embryonic development. Thus, by comparing the transcriptomic landscape between the two conditions, the study aimed to identify differentially spliced or expressed genes potentially regulated by fas.
· To perform this comparative analysis, raw sequencing data (FASTQ files) were downloaded from the NCBI SRA (Sequence Read Archive) and imported into the Galaxy Europe server (https://usegalaxy.eu) for preprocessing. Four RNA-Seq datasets were used—two replicates for each condition (mutant and wild-type)—to ensure reliability in downstream statistical analyses.
· Samples Used in This Study:
	· Sample Name
	· Genotype
	· Description

	· ERR1659925
	· Wild-Type
	· Embryo sample without fas mutation

	· ERR1659927
	· Wild-Type
	· Embryo sample without fas mutation

	· ERR1659929
	· P218 Mutant
	· Embryo sample carrying P218 mutation in fas

	· ERR1659930
	· P218 Mutant
	· Embryo sample carrying P218 mutation in fas


· Galaxy also allows metadata management, which was used to group and tag datasets by condition (Control vs. Mutant), simplifying downstream steps like alignment, counting, and differential expression analysis.
· Compatible with large datasets via FTP or direct import from NCBI/ENA
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 5.3 Quality Control using FastQC
Before performing any downstream analyses, it is essential to assess the quality of raw sequencing reads. Low-quality bases, adapter contamination, and other biases can significantly affect the accuracy of read alignment and gene quantification. To address this, the tool FastQC was employed to generate detailed quality reports for each RNA-Seq dataset.
FastQC was run on all four uploaded FASTQ files using the "FastQC: Read Quality reports" tool on the Galaxy platform. This step provided an overview of the sequencing read quality and helped identify potential issues such as base-calling errors, sequencing biases, or adapter contamination.
🔍 Key Parameters Analyzed in FastQC Reports:
	Parameter
	Description

	Per Base Sequence Quality
	Shows the quality score (Phred score) of bases across the read length. High-quality reads generally have scores above Q30. A drop at the ends may indicate sequencing degradation.

	Per Sequence Quality Scores
	Displays distribution of average quality scores per read. A normal distribution skewed toward high-quality reads is ideal.

	Per Base Sequence Content
	Measures the proportion of each base (A, T, G, C) across all sequences at each position. Large imbalances can indicate bias.

	GC Content
	Displays the GC% distribution of the reads. Deviations from the expected distribution may point to contamination or biased amplification.

	Per Base N Content
	Shows the proportion of ambiguous base calls (N) across all sequences. A high presence may indicate poor sequencing quality.

	Sequence Length Distribution
	Describes the range and uniformity of read lengths. Uniform read lengths (e.g., 100 bp) are expected in most modern platforms.

	Sequence Duplication Levels
	Indicates how many duplicate sequences exist. High duplication can suggest PCR artifacts or over-sequencing of a small library.

	Overrepresented Sequences
	Identifies sequences that occur unusually frequently. These are often adapter sequences or contaminants.

	Adapter Content
	Detects the presence of residual sequencing adapters. Adapter contamination must be removed before alignment.


After FastQC execution, each sample produced a compressed HTML report and a raw data file. These reports were carefully examined to decide whether trimming or filtering was necessary.
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 5.4 Adapter Removal using Cutadapt
After performing initial quality control using FastQC, we identified mild adapter contamination in some of the RNA-Seq samples. Leftover adapters from library preparation can interfere with accurate read alignment and lead to biased quantification. Therefore, the first step in preprocessing was to remove adapter sequences using Cutadapt.
Tool Used:
· Cutadapt (Galaxy version 1.18)
 Purpose:
· Remove Illumina adapter sequences from the reads.
· Reduce interference during alignment and improve mapping accuracy.
⚙️ Key Settings in Galaxy:
	Parameter
	Value

	Adapter sequence
	AGATCGGAAGAG (Illumina default)

	Minimum read length after trimming
	20 bp

	Discard reads with no adapter match
	No

	Quality trimming
	Not applied at this stage (only adapter removal)


 Output Summary (Example from ERR1659930):
· Reads processed: 18,456,789
· Reads with adapters: 3,256,120 (17.64%)
· Reads retained: ~96%
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5.5 Quality Trimming using Trimmomatic
Once adapter sequences were removed, the next step involved quality-based trimming using Trimmomatic, another widely used tool for preprocessing high-throughput sequencing data. Low-quality bases, especially at the ends, can lead to mismapped reads and misinterpretation during differential gene expression analysis.
Tool Used:
· Trimmomatic (Galaxy wrapper version 0.36.6)
 Purpose:
· Trim low-quality bases from the ends of reads.
· Remove any reads that are too short or of poor quality.
⚙️ Key Settings in Galaxy:
	Parameter
	Value

	Sliding window trimming
	4:20 (4-base window; average quality ≥ 20)

	Leading and trailing base removal
	Leading: 3, Trailing: 3

	Minimum read length
	36 bp

	Input
	Cutadapt-cleaned reads


Output Summary (Example from ERR1659930):
· Input reads: 17,128,570
· Reads retained after trimming: ~95%
· Reads discarded due to short length: ~2–3%
· Improved base quality across entire read length.
FastQC Re-Evaluation
After trimming:
· FastQC was re-run to confirm improvements.
· Results showed:
· Enhanced per-base quality scores
· No residual adapter content
· Balanced GC content
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5.6 Read Alignment using HISAT2
After performing quality control and trimming, the next crucial step in the RNA-Seq data analysis pipeline is the alignment of reads to the reference genome. In this study, we used HISAT2, a widely used splice-aware aligner, to map the clean reads onto the Drosophila melanogaster reference genome.
Purpose of Alignment
The goal of read alignment is to determine the genomic origin of each sequencing read. In RNA-Seq, this step is critical for:
· Quantifying gene expression levels
· Detecting exon-intron boundaries
· Identifying novel splice junctions
· Enabling accurate downstream differential expression analysis
Tool Used: HISAT2
· HISAT2 (Hierarchical Indexing for Spliced Alignment of Transcripts) is optimized for speed and memory efficiency.
· It uses a graph-based genome index to support spliced alignments.
· Supports alignment of reads across exon-exon junctions, which is crucial for eukaryotic transcriptomes.
Steps Performed in Galaxy:
1. Reference Genome Indexing (if not already provided):
· The reference genome (e.g., Drosophila melanogaster BDGP6) was either selected from pre-built indexes or uploaded and indexed using HISAT2 Build Index.
2. Run HISAT2 Alignment:
· Tool used: HISAT2 (Galaxy Tool)
· Inputs: Trimmed FASTQ files from Cutadapt/Trimmomatic and indexed reference genome.
· Parameters:
· Input Type: Single-end or paired-end depending on dataset
· Splice-Aware Alignment: Enabled
· Output Format: BAM file (Binary Alignment Map)
3. Outputs:
· A .bam file for each sample containing aligned reads
· Alignment summary showing:
· Total reads
· Uniquely mapped reads
· Multiple mapped reads
· Unmapped reads
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5.7 Sorting Aligned Reads using SAMtools Sort
Purpose
Once reads are aligned to the reference genome using HISAT2, the resulting output is typically in SAM or BAM format. These files are unsorted, which means reads are arranged in the order they were processed, not by genomic location.
Most downstream tools, such as featureCounts, require sorted BAM files (usually sorted by coordinates) to efficiently access and process the aligned reads. Hence, sorting is a crucial intermediate step.
Tool Used: SAMtools Sort (Galaxy Wrapper)
· Tool Name: Sort SAM or BAM file by coordinates
· Galaxy Location: NGS: SAMtools → Sort BAM
Steps Performed
1. Input: BAM file from HISAT2 (aligned reads for each sample).
2. Sorting Order: Chose to sort by coordinates (default and recommended).
3. Output File Format: BAM (Binary Alignment Map).
4. Repeat: Step was performed for all four samples individually.
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5.8 Read Quantification using FeatureCounts
Purpose
After aligning and sorting the RNA-Seq reads, the next critical step is quantifying how many reads map to each gene or genomic feature. This is essential for comparing gene expression levels between samples.
FeatureCounts is a fast and efficient tool used for this purpose. It counts the number of reads that align to genomic features (like genes or exons) based on a reference annotation (usually a GTF or GFF file).
Tool Used: FeatureCounts
· Tool Name: featureCounts
· Galaxy Location: NGS: RNA Analysis → featureCounts
Steps Performed
1. Input Files:
· Sorted BAM files from each of the four samples (*_sorted.bam).
· Corresponding gene annotation file (in GTF format) for the Drosophila melanogaster reference genome.
2. Count Mode:
· Reads were counted at the gene level.
· Only uniquely mapped reads were included.
· Strand-specific counting was disabled (as the protocol was unstranded).
3. Count Type:
· Reads overlapping with the exon regions of each gene were summed up per gene.
Example Settings Used (Galaxy)
	Parameter
	Value

	Input BAM files
	ERR1659927_sorted.bam, etc.

	Gene annotation file (GTF)
	Drosophila.gtf

	Feature type
	exon

	Gene ID attribute
	gene_id

	Strand-specific
	Unstranded

	Paired-end data
	Yes



Output Files
· A read count matrix was generated.
· Each row corresponds to a gene, and each column to a sample.
· Example (simplified view):
	Gene ID
	ERR1659927
	ERR1659930
	ERR1659925
	ERR1659929

	gene_1
	502
	418
	479
	430

	gene_2
	124
	132
	129
	115

	...
	...
	...
	...
	...
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Chapter 6: Differential Gene Expression Analysis using R
6.1 Overview of Differential Expression Analysis
Differential gene expression (DGE) analysis is a statistical approach used to identify genes that are significantly upregulated or downregulated between experimental conditions. In this study, we compare Drosophila melanogaster embryos carrying the P218 mutation in the fas gene with wild-type controls to investigate the impact of this mutation on pre-mRNA splicing during embryogenesis.
The main steps for DGE analysis using R and DESeq2 include:
1. Preparing input files (Count Matrix and Metadata)
2. Loading data into R
3. Creating DESeq2 dataset
4. Running DESeq2 analysis
5. Extracting results and applying thresholds
6. Visualization and interpretation
6.2 Input Files Required
6.2.1 Count Matrix (gene_counts.tsv or .csv)
· Contains raw counts of reads mapped to each gene for each sample.
· Typically generated using featureCounts or HTSeq-count after alignment.
· Rows = Genes, Columns = Samples (e.g., ERR1659927, ERR1659930, ERR1659925, ERR1659929)
6.2.2 Metadata File (sample_info.csv)
· Contains experimental information about each sample.
· Must include at least two columns:
· SampleName: matching the count matrix column names
· Condition: indicating the group (e.g., mutant, wildtype)
Example:
	SampleName
	Condition

	ERR1659927
	mutant

	ERR1659930
	mutant

	ERR1659925
	wildtype

	ERR1659929
	wildtype


6.3 Data Preparation and Package Setup
Before performing differential gene expression analysis, several R packages were installed and loaded. These include:
· DESeq2: Core package for normalization, statistical testing, and fold change estimation.
· RUVSeq: Used for removing unwanted variation (not directly applied here but loaded).
· pheatmap, RColorBrewer: For plotting heatmaps and applying color palettes.
· ggplot2, ggrepel: For creating volcano and PCA plots with enhanced labels.
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6.4 Importing Data
6.4.1 Gene Count Matrix
Raw read counts for each gene were imported from a CSV file generated by featureCounts.
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This matrix contained:
· Rows = gene IDs (e.g., FBgn0000008)
· Columns = sample IDs (e.g., ERR1659927)
6.4.2 Metadata File
Sample-specific information such as genotype was loaded to match each column in the count matrix.
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Data Integrity Check: Ensured that column names in COUNTS matched row names in META.
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6.5 Creating DESeq2 Object and Filtering
The DESeq2 dataset was constructed using the count matrix and metadata.
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Low-count genes were filtered to reduce noise:
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6.6 Running DESeq2 and Normalization
The core DESeq2 pipeline was executed:
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Normalization and transformations:
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6.7 Quality Control and Visualization
6.7.1 Scatterplots Before and After Normalization
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These plots show how normalization and transformation stabilize the variance across samples.
6.7.2 Histograms
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6.7.3 Sample-to-Sample Distance Heatmap
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Shows clustering of biological replicates based on expression similarity.
6.7.4 PCA Plot
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What it shows:
· Reduces thousands of gene expression values into 2 principal components (PC1 and PC2).
· Each dot is a sample, colored by condition (mutant vs wild-type).
6.7.5 Dspersion Plot
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6.8 Differential Expression Results
The DEGs were extracted with adjusted p-value and fold change thresholds:
[image: A black background with white text

AI-generated content may be incorrect.]
6.8.1 MA Plot
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Depicts log fold change vs. mean expression for all genes.
What it shows:
· The MA plot (Mean Average plot) displays the relationship between the mean of normalized counts (average expression) on the x-axis and the log2 fold change on the y-axis.
· Each point represents a gene.
· Significant genes (adjusted p-value < 0.05) are often highlighted in red.
6.8.2 Volcano Plot
Classifying genes by statistical and biological significance:
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What it shows:
· Combines log2 fold change (x-axis) and -log10 adjusted p-value (y-axis).
· Genes with both high fold change and low p-values are seen in the top corners of the plot.
6.9 Heatmaps of Top Differentially Expressed Genes
Top 10 Upregulated Genes
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Top 10 Downregulated Genes
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What it shows:
· Rows are top 30 significant genes, columns are samples.
· Colors represent expression level (after variance-stabilizing transformation).
· Clustering indicates sample similarity based on expression.
6.10 Saving Results
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Chapter 7: Results and Interpretation
Chapter 4: Linux Techniques and Applications
4.1 Remote BLAST Execution via NCBI Using Linux Terminal
Upon execution, the BLAST job was submitted remotely and completed successfully. The resulting file, results.txt, contains detailed alignments showing the query’s matches with sequences available in the NCBI nt database.
Each alignment section in the output includes:
· Query and subject sequence names
· Alignment scores and bit scores
· Percent identity
· E-values
· Matched sequence alignments
This approach provided quick and efficient confirmation of sequence similarity without the need for local infrastructure.
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4.3 Linux Shell Scripting for Genomic Data Analysis.
[image: A computer screen with white text

AI-generated content may be incorrect.]


CHAPTER 5: Galaxy Platform and Preprocessing Workflow
5.3 Quality Control using FastQC
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5.4 Adapter Removal using Cutadapt
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5.5 Quality Trimming using Trimmomatic
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5.6 Read Alignment using HISAT2
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5.7 Sorting Aligned Reads using SAMtools Sort
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5.9 Read Quantification using FeatureCounts
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Chapter 6: Differential Gene Expression Analysis using R
6.7 Quality Control and Visualization
6.7.1 Scatterplots Before and After Normalization
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6.7.2 Histograms
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[image: ]6.7.3 Sample-to-Sample Distance Heatmap

6.7.4 PCA Plot
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Interpretation:
· If samples cluster clearly by condition, this indicates strong separation in gene expression.
· Helps verify data quality and batch effects.
· PCA provides evidence that the condition has a significant impact on global expression.
6.7.5 Dspersion Plot
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6.8.1 MA Plot
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Interpretation:
· Genes near log2 fold change = 0 have similar expression in both conditions (no significant change).
· Points higher or lower on the y-axis represent upregulated or downregulated genes.
· The plot helps you visually identify which genes are most significantly differentially expressed between mutant and wild-type Drosophila embryos.
6.8.2 Volcano Plot
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Interpretation:
· Genes in the top-left and top-right are significantly upregulated or downregulated.
· The volcano shape allows fast identification of high-impact DEGs.
· Good for publication figures to show significant gene expression changes.
6.9 Heatmaps of Top Differentially Expressed Genes
[image: ]
[image: ]
Interpretation:
· Samples from the same condition (e.g., wild-type) should cluster together if expression patterns are distinct.
· Shows clear gene expression pattern differences between P218 mutant and wild-type Drosophila embryos.










Chapter 8: Results, Conclusion, and Future Scope
8.1 Results and Interpretation
The analysis of transcriptomic data from Drosophila embryos with the fas (faint sausage) gene mutation was carried out through a complete RNA-Seq workflow, ranging from raw sequence data preprocessing to differential gene expression analysis and visualization. The samples used in this study included two mutants (ERR1659927 and ERR1659930) and two wild-type controls (ERR1659925 and ERR1659929).
After processing the raw sequencing reads using tools such as FastQC, Cutadapt, Trimmomatic, and HISAT2, the aligned reads were quantified using featureCounts. These gene count matrices, along with metadata, were then input into DESeq2 in R for statistical analysis.
The key outcomes and interpretations are as follows:
· PCA Plot revealed distinct clustering of mutant and control samples, indicating that the overall gene expression patterns are significantly altered in the fas mutant embryos.
· MA Plot (log ratio vs. mean average) showed a symmetrical distribution of genes, with several significantly upregulated and downregulated genes, indicating robust differential expression between groups.
· Volcano Plot provided a visual snapshot of genes with the highest statistical significance and fold change, helping to identify candidate genes affected by the fas mutation.
· Heatmap of the top 50 differentially expressed genes highlighted clear differences in expression patterns between mutant and wild-type samples, reinforcing the biological impact of the fas mutation.
The differentially expressed genes observed suggest disruptions in pathways related to RNA splicing, embryonic development, and signal transduction, consistent with the known biological role of the fas gene in pre-mRNA processing during early development.
8.2 Conclusion
This internship project provided hands-on exposure to transcriptomics and advanced bioinformatics analysis using RNA-Seq data. The investigation focused on understanding the impact of the P218 mutation in the fas gene of Drosophila melanogaster embryos.
Key achievements and learnings from this project include:
· Mastery of basic and advanced Linux commands and bioinformatics tools such as FastQC, Cutadapt, Trimmomatic, HISAT2, SAMtools, and featureCounts.
· Practical experience using the Galaxy platform for accessible, GUI-based pipeline building and processing.
· Statistical computing in R using DESeq2, including data loading, normalization, differential gene expression analysis, and result visualization.
· Interpretation of visual plots and statistical outputs to derive biological significance from computational results.
Overall, this project successfully demonstrated that the fas gene mutation leads to measurable changes in gene expression patterns, affirming its key role in RNA processing during embryogenesis. The workflow employed serves as a strong template for similar RNA-Seq based transcriptomic studies.
8.3 Future Scope
This study lays the groundwork for multiple directions in which the research can be extended or refined. The following future enhancements are recommended:
1. Functional Annotation and Pathway Enrichment
Tools like DAVID, ClusterProfiler, or gProfiler can be used to perform Gene Ontology (GO) enrichment and KEGG pathway analysis to further investigate the biological roles of differentially expressed genes.
2. Alternative Splicing Analysis
Given that fas is associated with pre-mRNA splicing, tools like rMATS, DEXSeq, or MAJIQ can be used to explore exon usage and splicing isoform variations between conditions.
3. Time-Series RNA-Seq Analysis
Performing RNA-Seq across multiple embryonic time points could capture dynamic gene regulation and reveal temporal effects of the fas mutation during developmental stages.
4. Transcript Isoform Reconstruction
Use of transcriptome assemblers like StringTie or Cufflinks could reconstruct full-length transcripts and novel isoforms that may be affected by the mutation.
5. Wet Lab Validation
Experimental validation using qPCR, Western blot, or in situ hybridization can confirm the differential expression of key candidate genes and strengthen the findings.
6. Cross-Species Comparison
Investigating whether similar gene expression disruptions occur in other organisms with homologous splicing genes may broaden the biological implications of the findings.
8.4 Applications
The skills and techniques gained through this internship have wide-ranging applications in modern biology and biomedical sciences:
· Genetic and Developmental Research
This pipeline can be used in developmental biology to understand gene regulation during critical stages such as embryogenesis.
· Disease Mechanism Studies
Similar RNA-Seq workflows can be employed to study gene expression in disease models, such as cancer, neurodegeneration, or genetic disorders involving splicing defects.
· Precision Medicine and Therapeutics
Understanding gene expression and splicing changes can help design targeted gene therapies or drug interventions for diseases caused by regulatory defects.
· Agrigenomics and Crop Improvement
Transcriptomics can also be applied to plants for stress response analysis, trait selection, and improving yield using genetic engineering.
· Education and Research Training
This project serves as a valuable learning model for students and early researchers entering the field of bioinformatics and systems biology.
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# Dispersion Plot
plotDispEsts(prdds, main = "Dispersion plot",
genecol="gray20", fitcol="red", finalcol="dodgerblue3")
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res@s <- results(prdds, alpha = ©.05)
reses <- na.omit(reses)

reseSordered <- reso5[order(rese5spadi), ]
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# MA Plot
DESeq2: :plotMA(res@5, main="DE Genes (Genotype)", ylim=c(-5,10),
cex=0.5, colNonsig=adjustcolor("gray2e”, alpha.f=0.5),

colsig=adjustcolor("dodgerblue3”, alpha.f=e.5))
abline(h = 1, col = '#ffoeee’, lud = 1)
abline(h = -1, col= '#ffoeee’, lud = 1)
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# Volcano Plot >etup
res@sggene_status <- ifelse(
resesgpadj < 0.05,
ifelse(res@s$log2Foldchange > 1, "Up-Regulated”,
ifelse(reses$log2Foldchange < -1, "Down-Regulated”, "Non-significant")),
“"Non-significant"

)
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# Volcano Plot|
volcano_plot <- ggplot(reses, aes(x = log2Foldchange, y = -logie(padj), color = factor(gene_status))) +
geom_point(size = 1, alpha = 0.7) +
scale_color_manual(values = brewer.pal(3, "Set1")) +
‘theme_minimal() +
gatitle("Volcano Plot of Differentially Expressed Genes (Genotype)") +
xlab("log2 Fold Change") +
ylab("-log10(Adjusted p-value)") +
‘theme (legend.title = element blank()) +
geom_hline(yintercept = -10g10(0.05), linetype = "dashed") +
geom vline(xintercept = c(-1, 1), linetype = "dashed")
print(volcano plot)
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# Significant Genes

sig_genes <- as.data.frame(reses[rese5$padj < 0.05 & abs(reses$log2Foldchange) > 1, 1)
up_genes <- subset(sig_genes, log2FoldChange > @)

down_genes <- subset(sig_genes, log2Foldchange < @)
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# Top Upregulated Heatmap
top_up <- head(up_genes[order(up_genes$log2Foldchange, decreasing = TRUE), ], 10)
top_up_exp <- assay(rld)[rownames(top_up), 1
pheatmap(top_up_exp,
cluster_rows = FALSE, cluster_cols = FALSE,
scale = "row”, show_colnames = TRUE,
col = brewer.pal(name="RdBu", n=11),
main = "Top Up Regulated Genes Heatmap")
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# Top Downregulated Heatmap
top_down <- head(down_genes[order(down_genes$log2Foldchange, decreasing = TRUE), ], 10)
top_down_exp <- assay(rld)[rownames(top_down), ]
pheatmap (top_down_exp,
cluster_rows = FALSE, cluster_cols = FALSE,
scale = "row”, show_colnames = TRUE,
col = brewer.pal(name="RdBu", n=11),
main = "Top Down Regulated Genes Heatmap")
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# Save Results

sig_genes$gene_status <- ifelse(sig_genes$log2Foldchange > 0, "Up-Regulated”, "Down-Regulated")
sig_genes$gene_id <- rownames(sig_genes)

if (Ifile.exists("result")) {
dir.create("result")
}

write.table(sig genes, file = "result/significant DE_genes.csv”, sep = ",", row.names = FALSE)

# Session Info
sessionInfo()
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Linux@IYASH:~$ cat results.txt
BLASTN 2.12.0+

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA sequences", J
Comput Biol 2000; 7(1-2):203-14.

Database: Nucleotide collection (nt)
104,217,277 sequences; 1,600,695,373,582 total letters

Query= my_sequence

Length=29
RID: 7XNUBM9TO14

Score E
Sequences producing significant alignments: (Bits) Value

0Z156459.1 Phyllospongia foliascens genome assembly, chromosome: 12  52.8 0.001

>0Z156459.1 Phyllospongia foliascens genome assembly, chromosome: 12
Length=16768371

Score = 52.8 bits (28), Expect = 0.6001
Identities = 28/28 (100%), Gaps = 0/28 (0%)
Strand=Plus/Minus
Query 1 ATGCGTACGTAGCTAGCTAGCTAGCTAC 28

[LLLELEETTETLEEET T ErErn
Sbjct 10946787 ATGCGTACGTAGCTAGCTAGCTAGCTAC 10946760
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Lambda K H

1.33 0.621 1.12
Gapped
Lambda K H

1.28 0.460 0.850

Effective search space used: 8381477987526

Database: Nucleotide collection (nt)

Posted date: Mar 12, 2024 12:15 AM
Number of letters in database: 1,600,6695,6373,582
Number of sequences in database: 164,217,277

Matrix: blastn matrix 1 -2
Gap Penalties: Existence: 0, Extension: 2.5
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Number of genome sequences: 1

Total genome length: 4641652 bp

Longest sequence: 4641652 bp

Number of genes: 9427

Number of CDS entries: 4338

Top read file: sample2.fastq (1920998 reads)





image105.png
‘@FastQC Report AR





image106.png
IPer tile sequence quality

i





image107.png
@Per sequence quality scores

[T p—

s sequence ity Frved sl




image108.png
©Per base sequence content

Fostionin read ()




image109.png
@Per sequence GC content





image110.png
@ sequence Length Distribution

Ditrbuten fsequence lonihs ove sl soquences.

Sequence tengn op)




image111.png
@ sequence Duplication Levels

Perontof sgs remaning f deduplcstea 21235

Sequence Supleaten Lo,

@0verrepresented sequences

I S T





image112.png
@ Adapter Content

s sdpter
N hominasmal 44 Agapter
s

h ostn nresa bp)




image5.png




image113.png
@ERR1659929.1 HWI-DO@418:83:C7GOGANXX:2:1101:1377:2023/2
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+
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@ERR1659929.2 HWI-DO@A418:83:C7GIGANXX:2:1101:1357:2030/1
NCAGAATGACGCCGAACTTGATCGAATCGATGATATCCTCAACAAGAAACAGACGCC TCAGCTCGGAGATGAAGCCATTGATATGTGCCACAGCCACGCCGGCAATGTTC
+

#=<ABEGGGGGEGFDAGGGGGGEGGCEGEEEC6GEGF GEGEGECEGE6E6EEGEEGEGEGEEGGEGEGEGEGEGEGEGE>GGEEOEF FEGEGEGEFG>CGEDGGEGEGE!
@ERR1659929.3 HWI-DOO418:83: C7GIGANXX:2:1101:1420:2037/1
NAGCTGTCCCATCGAAGTTGCCCGTGATCCTGTCTTAGTTGCAGGCTTCGTCCTCCAAGAAGAAGAACTGECCGGAGCGTTTCTGTTCTGTGTCCTTGACCGAATTGTT'
+

#<<ABGGGGGGEGCGGBFF 1F GGGGCBGEEECEGGFEEFG>GEGEGEGECEFGGEGBFGGEC>GE>F GEGEGEGEGEBEGDGEGGGEGEGEGEGF GEGEGEGEGEGEDOT
@ERR1659929.4 HWI-DOOA418:83:C7GIGANXX:2:1101:1441:2038/1
NTCCGGTGGTAAACGAACTCCAAGCAGAGATGGGTGCTCACTTCCAGTACCCATCATGTAATCCTTGGAACTGGACTTGCCCGATCCCGACGTGGAACTGTTCCCTCCC
+
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bash

nkdir new_folder
mkdir -p parent/child/grandchild

rdir empty_folder

rn -r non_empty_folder  # Deletes folder with contents
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bash

cd /path/to/folder
cd # Home directory
.. # Parent directory

- # Previous directory
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bash

touch filel.txt




image10.png
bash

mv filel.txt file.txt
mv file.txt /mnt/data/folder/
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bash

cp Filel.txt filed.txt
cp -r folder1/ folder2/
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bash

rm filename. txt
o *.pdf # Delete all POF files in directory
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bash

cat file.txt
less file.txt
head file.txt
tail file.txt

# Display entire file
# Paginated view
# First 10 lines

# Last 10 lines
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# Case-insensitive

# Exclude pattern

grep ~c "ATCG" file.txt # Count occurrences
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bash

sort input.txt > sorted.txt
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bash

we -1 file.txt # Line count
we -w file.txt # vord count

we -m file.txt # Character count
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bash

gzip file.txt
gzip Kk File.txt # Keep original file
gzip -r folder/ # Recursively compress
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‘bash.

gzip -d file.txt.gz
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# View all previous commands
# Repeat last command

# Repeat third-last command
# Repeat last grep command





image20.png
# Print Hello World
print(“Hello, R!")
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X <- 165
y < a

name <- “GeneA”
lag <- TRUE

Z<- 2430
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a<-s5
b< 2

a+h 7

a%b #1 (modulus)
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X <- readline("Enter a value: ")  # User input
data <- read.csv("counts.csv") # CsV file input
View(data) # Spreadsheet view in Rstudio
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round(3.14159, 2)
log1e(1606)
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set.seed(42)
sample(1:16, 3) # Random sample

rnorm(5) # Normal distribution
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V<1, 2, 3, 8)
v[2] # Access second element
vIv > 21 # Conditional filtering
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mylist <- list(10, "gene”, TRUE)
mylist[[2]] # Access second item
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m <- matrix(1:6, nrow=2)
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a <- array(1:8, din=c(2,2,2))
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OF <- data.frame(Name=c("GeneA”, “Gened"), Expression=c(166, 260))
str(df) # Structure of data frame
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grp <~ factor(c("control”, "treated”, "control”))
levels(grp)
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X< 5
if (x> 3) {

print("x is greater than 3")

for (i in 1:3) {
print(i)

i1
while (i

print(i)

=) {

ic-i+1
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add <- function(a, b) {
return(a + b)

¥
add(2, 3) #5
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X< (1, 2, 3, 4, 5)
mean (x)

median(x)

sd(x)

var(x)
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dnorm(@) # Normal distribution density
rbinon(s, 16, 0.5) # Random binomial values
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t.test(c(s, 6, 7). (8, 9, 10)) # Two-sample t-test
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X < 110
y < x
plot(x, v, t
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plot(x, y, type="1", col="darkgreen”, lwd=2, main="Line Plot")
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data <- rnorm(166, mean=56, sd=10)
hist(data, col="skyblue", main="Histogran”, xlab="Values”, breaks=16)
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counts <- (23, 17, 35, 29)
categories <- c("A", "8", "C", "D")
barplot(counts, names.arg-categories, col

coral”, mais

Bar Plot”, ylab="Count")
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slices <- (16, 20, 30, 48)
labels ¢- c("GeneA”, "GeneB", "GeneC", "GeneD")
pie(slices, labels-labels, col-rainbow(2), main="pie Chart of Gene Expression”)
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library(ggplot2)

geplot(ntcars, aes(x-mpg, y=wt)) +
geom_point(color="darkgreen”, size=3) +
BEtitle("MPG Vs Height
xlab("Miles Per Gallon") +
ylab(“Height™)
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geplot(iris, aes(x-species, y=sepal.length, fill-Species)) +
geom_boxplot() +
‘theme_classic()
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df %%
group_by(condition) %%

summarise(avg = mean(expression), sd = sd(expression))
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bash

nano query. fasta
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>my_sequence
ATGCGTACGTAGCTAGCTAGCTAGCTACG
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bash

blastn -query query.fasta -db nt -remote -out results.txt -outfmt ©
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bash

sudo apt update
sudo apt install sra-toolkit fastqc default-jre
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bash

fasterq-dunp --version

fastqc --version
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‘bash.

nkdir drosophila_project
cd drosophila_project
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bash.

fasterq-dunp ERR1650936 --split-files
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bash

fastqc ERR1650930_1.fastq ERR1659936_2. fastq
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bash

xdg-open ERR1659936_1_fastqc.html
xdg-open ERR1650936_2_fastqc.html
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bash

project_directory/

|— genpme. fasta # Genome sequence
|— genome.gff # Genome annotation
L— reads/

# Directory with raw FASTQ reads
}— sample1.fastq

L— sample2.fastq
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#1/bin/bash

# Step 1: Set default values
DIR=".
REPORT:
ONLY_GENOME="21<

# Step 1.1: Parse comand-Line arguments
or arg in "$6%; do
case sarg in
~-report)
REPORT_NEXT=truic

--only-genome)
ONLY_GENOHE=t e

5)
1F [ "SREPORT_NEXT™
REPORT="2r2"
REPORT_NEXT=21c.
else
DIR="Sare
E

rue 11; then

done
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# Step 2: Set ile paths
FASTA="$017/genpne  fasta"
GFF="5017/genome.gFF"
READS_DIR="017/reads™

# Step 2.1: Check for required files
iF [[ 1 -F "SFASTA" 11; then
echo "X genpme.fasta not found in SDIR®
exit 1
s

5 L ¢ -F "s6FF
echo "X genone.gF not found in SDTR"
eat 1

then

s

5F [ "SONLY_GENOVE™ = false 115 then

[0t - "5Re205 01R" 11 |1 [[ -2 $(Is “SREADS DIR"/*.fastq 2>/dev/null) 11 then
echo "X No .fastq Files found in SREADS DIR®
exit 1

l

s
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# Step 3: Analyze genpme. fasta
SEQ_COUNT=$(grep -c > “57AsTem)

GENOME_LENGTH=$(grep -v “>* “$7ASTa" | tr -d “\n' | we -0)

LONGEST_SEQ=$(amk */">/ {if (len) print len; len=d; next} {lens=length(8)} END {print len}' "SFAS

# Step 4: Analyze genome.gFf
GENE_COUNT=S (grep ~iw “zenc.
DS_COUNT=S(grep -iw (05

sGeem | grep v i | we -1)
677" | grep v "5 | we -1)

# Step 5: Analyze read files if not skipped
5F [ "SONLY_GENOVE™ = false 115 then
MAX_READS=0
Top_FIL
for file in "SREADS DIR"/*.fasta; do
count=$(uc -1 < “s7ile")
reads=$((count / ))
37 (( reads > WAX_READS )); then
X READS=S 5t
TOP_FILE=§ (basename “$File")
l

done
s
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# Step 6: Generate output sumary
QUT="Results: \n
ours=

A
QUTe="lumber of genome sequences: $SEQ_COUNT\R®
QUTe="Total genone length: SGENOHE_LENGTH bp\n™
QUTe="Longest sequence: SLONGEST_SEQ bp\n*
QUTe="Number of genes: SGENE_CONT\A®
QUTe="Nusber of (DS entries: $CDS_COUNT\R"
5F [ "SONLY_GENOVE™ = false 115 then

QUT4="Top read File: $TOP_FILE (SHAX_READS reads)\n”
s

ours= -\
# Step 7: Print and/or save the output
echo -e "souT™

iF [[ -n "SREPORT® 11; then
echo -e "SOUT™ > "SREPORT™
echo * [l Report saved to SREPORT®
H
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chmod +x bio_analysis.sh
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# FastQC Read Quality reports (Galaxy Version 8.74+galaxy1) e - a
Tool Parameters

Raw read data from your current history *

B ©® O - wsrss -

acceprea formats =

Contaminant tist <=+~

B © O - | Nothingselected -

ccepted formats +
tab delimited file with 2 columns: name and sequence. For example: llumina Small RNA RT Primer CAAGCAGAAGACGGCATACGA

Adapter st -
B © O . Nothing selected -

ccepted formats +
List of adapters adapter sequences which will be explicty searched against the library. It should be a tab-Gelimited file with 2 columns: name and sequence. (~-adapters]

Submodule and Limit specifing file - <=
B © O . Nothing selected -

ccepted formats +
a file that specifies which submodules are to be executed (default=all) and also specifies the thresholds for the each submoduies warning parameter

Disable grouping of bases for reads >50bp.
N
Using this option will cause fastac to crash and burn if you use it on really long reads, and your plots may end up a rdiculous size. You have been wamed! (—nogroup)

Lower Limit on the Length of the sequence to be shown in the report ==+~

As long as you set this o 2 value greater or equal to your longest read length then this will b the sequence length used to create your read aroups. This can be useful for making directly comaparable statistic from datasets with somewnat variable read lenghs. (—
min length)

Length of Kmer to look for *
7 °

Note: the Kmer test i disabled and needs to be enabled using a custom Submodule and limits fle (—kmers]
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# Cutadapt Remove adepter sequences from FASTA/FASTA (Gelany Version 51+gala0] LI Y
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# Trimmomatic flexible read trimming toolfor Ilumina NGS data (Galaxy Version 6.39+galaxy2)

Tool Parameters.
‘Single-end or paired-end reads?
Paired-end (two separate input fles) -

Input FASTA file (R1/first of pair) *

1] D | .. || 216:Cutadapt on data 179 and data 176: Read 1 Output R1S4. -
ccepted formats =

Input FASTG file (R2/second of pair) *

== | 217:Cutadapt on data 179 and data 176: Read 2 Output R254 -

Cut adapter and other ilumina-specific sequences from the read
Trimmomatic Operation
: Trimmomatic Operation - - m
Select Trimmomatic operation to perform
Siiding window trimming (SLIDINGWINDOW) -

Number of bases to average across *
4

Average quality required

20
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/ HISAT2 A fast and sensitive alignment program (Galaxy Version 2.2.1+galaxy) & -

Tool Parameters

‘Source for the reference genome

Use a genome from history -
Built-in references were created using default options
Select the reference genome *

[u]

‘accepted formats

DO . | 92:REFERENCE (as fasta) -

1s this a single or paired library

Paired-end -

FASTA/Q file #1*

[u]

‘accepted formats ~
Must be of datatype fastasangeror “fasta”

O . | 225:Trimmomatic on Cutadapt on data 179 and data 178: Read 2 Output (R2 unpaired) -

FASTA/Q file #2

[u]

‘accepted formats ~
Must be of datatype fastasangeror “fasta”

O . | 225:Trimmomatic on Cutadapt on data 179 and data 178: Read 2 Output (R2 unpaired) -

‘Specify strand information *
Unstranded -

“FR means a read corresponds to a transcript. 'RF means a read corresponds to the reverse complemented counterpart of a transcript. With this option being used, every read alignment
will have an XS attribute tag: '+' means a read belongs 1o a transcript on *+* strand of genome. * means a read belongs o a transcript on ' strand of genome. (—ma-strandness)
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# Samtools sort order of storing aligned seauences (Galaxy Version 2.0.6)

Tool Parameters
BAM File *
[u]

accepted formats

227: HISAT2 on data 223, data 222, and data 92: aligned reads (BAM) RS4

Primary sort key

Use minimiser for clustering unaligned/unplaced reads. (-M)

Additional Options
icati
@) no

‘Send an email notification when the job completes.

Attempt to re-use jobs with identical parameters?

o
This may sk executing obs thatyou have alreacy run.
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/ featureCounts Measure gene expression in RNA-Seq experiments from SAM or BAM files (Galaxy Version 2.11+galaxys) & -

Tool Parameters
Alignment fite *
D

accepted formats

The input alignment file(s) where the gene expression has to be counted. The file can have a SAM or BAM format; but ALL files must be in the same format. Unless you are using a Gene.
‘annotation file from the History, these files must have the database/genome attribute already specified eg. hg38, not the default: ?

DO . | 23t Samtools sort on data 227 RS4. -

‘Specify strand information *
Unstranded -

Indicate if the data is stranded and if strand-specific read counting should be performed. Strand setting must be the same as the strand settings used to produce the mapped BAM input(s)
-s)

Gene annotation file

locally cached -

! Please provide a value for this option.
Using locally cached annotation * r=esred

If the annotation file you require is not listed here, please contact the Galaxy administrator.

GFF feature type filter - ionst
exon
‘Specify the feature type. Only rows which have the matched matched feature type in the provided GTF annotation file will be included for read counting. ‘exon’ by default. (4]

GFF aene identifier - ootional
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# Installation and loading of required packages

if (IrequireNamespace("Biocianager”, quietly = TRUE)) {
install.packages("#iochanager”)

¥

BiocManager: : install(c("DESeq2”, "RUVSeq”, "pheatmap”, "RColorBrewer”))

install.packages(c("zzplot?”, “gzrepel”))

# Load libraries
library(DESeq2)
library(RUVSeq)
library(pheatmap)
1ibrary(RColorBrever)
library(ggplot2)
library(ggrepel)
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COUNTS <~ read.csv( path/to/count final file.c<u’, header = TRUE, row.names = 1, check.names = FALSE)
COUNTS <~ round(as.matrix(COUNTS))
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META <- read.csv("path/to/netafile.csu”, header = TRUE, row.names = 1)
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COUNTS <~ COUNTS[, rownames (META)]
stopifnot(all(colnames(COUNTS) == rownames(META)))




image85.png
dds <- DESeqDataSetFromMatrix(countData = COUNTS, colData = META, design = ~ Genotype)
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dds <- dds[rowMeans (counts(dds)) >= 10, ]
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prdds <- DESeq(dds)
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norm_counts <- counts(prdds, normalized = TRUE)
rld <- rlogTransformation(prdds, blind = FALSE)
vsd <- varianceStabilizingTransformation(dds, blind

FALSE)
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# Scatter Plots
par(wfrow=c(:, 2))
lims <- (-2, 20)
Plot(log2(counts(dds, normalized=7U5)[, 1
plot(assay(rld)[,1:2], pch=16, cex=0., mair
plot(assay(vsd)[,1:2], pch=16, cex=0.7, mair

1+ 1), peh=i5, cex=0.3, main="loz2(x + 1)", xlim:
R log', xlim-lins, ylim-lins)
VST, xlimelins, ylin=lims)
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hist(counts(dds)) # Raw counts
hist(assay(rld)) # Regularized log
hist(assay(vsd)) # VST-transformed
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# Sample-to-sample distance heatmap
sample_dist <- dist(t(assay(rld)))
sample_dist_matrix <- as.matrix(sample_dist)
colors <- colorRampPalette(rev(brewer.pal(?, “5lucs")))(255)
pheatmap(sample_dist_matrix,

clustering distance_rows=sample_dist,

clustering distance_cols=sample_dist,

col=colors)
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# PCA Plot using Genotype
pea_data <- plotPCA(rld, intgroup = c(Genotypc”), returndata = TRUE)
geplot(pca_data, aes(x = PC1, y = PC2)) +
geom_point(size = 2, aes(color = Genotype)) +
geom_text_repel(aes(label - rownames(pca_data)), nudge x = 0, nudge.y = ©) +
xlab(pasted(""C1: ", round(attr(pca_data, “percentvar)[1], 2) * 100, % varimnce’)) +
ylab(pastea("#C2: , round(attr(pca_data, “percentvar)[21, 2) * 100, % variznce’))





