Isolation, characterization and antagonistic efficacy of fungal endosymbionts from allied genera of cardamom

M.P. Faisal*, C.N. Biju', R. Pravccna', R. Gowri and S.J. Ankcgowda

ICAR·llldialllllslilllle o/Spices Research Regiollal Slalioll. Madikeri - *571 201. Kamalaka. India* ¹ ICAR-Indian Institute of Spices Research, Kozhikode - 673 012, Kerala, India

(Manuscript Received: 02-11-17, Revised: 16-02-18, Accepted: 15-03-18)

Abstract

Small cardamom *(Elettaria cardamomum* Maton) is a major spice crop cultivated for its economic, culinary and medicinal values. Rhizome/clump rot, caused by Pythium vexans, Fusarium oxysporum and Rhizoctonia solani, is one of the destructive fungal diseases accounting to 30 per cent crop loss. Deployment of beneficial microbes possessing growth promotion activity and antagonistic potential against pathogens could be a viable and sustainable approach to nullify the deleterious effects of synthetic molecules on nature and to control the disease effectively. In this study, an effort was made to isolate the endosymbiotic fungi associated with allied genera of cardamom and evaluating their antagonistic efficacy under in vitro conditions against the rhizome rot pathogens. Among the endophytic fungi isolated, maximum inhibition of P. vexans was noticed in AsuL4 with 72.4 per cent, followed by HcoL1 with 60.3 per cent, while AmeR2 recorded maximum inhibition 65.3 per cent over control against R. solani followed by HcoL1 with 55.1 per cent inhibition. Among the 17 isolates tested against *F. oxysporum*, endophytes isolated from Amomum subulatum, AsuLV3 recorded maximum inhibition of 73.8 per cent followed by AsuL4 with 69.9 per cent. The shortlisted efficacious isolates need to be further evaluated under glasshouse and field conditions to confirm their efficacy and could be employed as integral components in cardamom production system to manage rhizome-root rot efficiently, economically and eco-friendly in a sustainable manner.

Keywords: Antagonistic fungi, cardamom, disease management, endophyte, rhizome rot

Introduction

Small cardamon *(Elettaria cardamomum* Maton) also known as queen of spices, is one of the most valuable spice crops grown in Western Ghats owing to its high national and international market demand. In India, cardamom is cultivated in 70000 hectares. Approximately 18 thousand tonnes (Spices Board Estimate, 2014) is produced every year and India is a traditional producer and exporter of small cardamom. Diseases are among the most significant constraints to cardamom production in the subtropics: more than 20 pathogens (fungal, bacterial and viral) are known to attack this crop, but less than a dozen can cause substantial economic loss. Among them, rhizome/ clump rot (caused by *Pythium vexans*, *Rhizoctonia so/ani* and *Fusarium oxysporum)* and leaf blight

(caused by *Col/eolrichum g/oeosporoides)* are the major fungal diseases causing about 30 per cent crop loss (Thomas *et al.*, 1988; Vijayan and Thomas, 2002). Indiscriminate use of fungicides invites rejection of export consignment due to chemical residues that are above the maximum residue level (MRL).

Symptoms of rhizome rot initially starts as water soaked lesions at the collar region, followed by decay of the tillers and ultimately leading to toppling of tillers. Infected tillers can be easily pulled out with a little force. Use of naturally available antagonistic microorganisms against rhizome rot pathogens is a substitution approach to grow cardamom on a sustainable basis. Plants express multiple traits including that are expressed by symbiotic microbes, they provide food or minerals to plants and resistance

against herbivores and pathogens (Barrett and Heil, 2012). Several characters act directly against these pathogens like competition, repellent, and some indirect effects by producing antimicrobial compounds or function as mechanical barriers (Heil, 200S).

The tactical use of naturally occurring microbes to ward off pathogens and augment production of major crops represents an alternative and feasible option to induce host plant resistance and pesticide free pest and disease control. Glenn et al. (1996) found that endophytes are systemic, seedborne and non-pathogenic, belonging to genus Neotyphodium and were highly competitive and antagonist.

Marshall et al. (1998) characterized ten species of endophytes obtained from Triticum. Most of them were Acremonium and Neotyphodium. Paenibacillus polymyxa and Citrobacter sp. isolated from wild relatives of maize showed antagonistic activity against *F. oxysporum* (Mousa et al., 2015). The present study was formulated with the objective to characterize endophytes from wild genera of small cardamom free from rhzome rot and test its efficacy.

Materials and methods

Isolation of rhizome rot pathogens

The pathogen was isolated by using tissue dissection methods as described by Prema et al. (2011). Infected rhizomes showing typical symptoms were cut into small bits and surface sterilized in 0.1 per cent mercuric chloride solution for about a minute, followed by washing thrice in sterile distilled water. Tissues were transferred to sterile Petri plates, pre plated with potato dextrose agar (PDA) medium. The inoculated Petri plates were incubated in BOD incubator at (2S±2°C) and observations were taken at regular intervals. The pathogen was identified based on their cultural and morphological characters. A bit of fungal culture was microscopically examined at 40X magnification for the presence of conidia $(F. *oxysporum*)$, constriction in daughter mycelia (R. solani) and sporangia $(P.$ vexans).

Isolation of fungal endosymbionts

Endophytic fungi present in wild genera of cardamom were isolated from leaves, stem, root and rhizomes of three wild genera viz., Aframomum melegueta (Ame), Amomum subulatum (Asu) and *Hedychium coronarium* (Hco). For study of endophytic fungi growing symptomless in healthy plant tissues, cultivation technique was followed as explained by Unterseher and Schnittler (2009). Plant organs were dissected into small fragments, surface sterilized and plated onto PDA medium. Cultural characters like colony growth, colour, zonation, substrate colour, margin of colony and topography were recorded.

In vitro inhibition of pathogens

Fungal endosymbionts were evaluated for their ability to inhibit mycelial growth of F . oxysporum, P. vexans and R. solani by following the dual culture technique (Dennis and Webster, 1971). The antagonist culture was inoculated at one side of Petri plate at about a cm from one edge of the plate on PDA medium and mycelial disc (8 mm diameter) of seven days old culture of pathogens was placed on the opposite side perpendicular to the antagonist plug. The plates were incubated at room temperature (28 \pm 2 °C) for four days in case of *P. vexans* and $R.$ solani and for seven days in case of $F.$ oxysporum, and the radial mycelial growth (mm) of the pathogen was recorded. Per cent inhibition of the mycelial growth was then calculated by using formula as follows.

Per cent inhibition over control = $C - T x 100$ C

where, C is the mycelial growth of pathogen in control and T is mycelial growth of pathogen in dual plate

Data analysis

The *in vitro* bioassay experiments were laid out in completely randomized design (CRD), the per cent data was transformed using arc sine transformation and statistical analysis was carried out using the software package AGRES version 7.01 (1994 Pascal Intl Software Solutions).

Results and discussion

Rhizome rot in small cardamom is one of the major diseases known to farmers growing the crop in Kerala and Karnataka and is also referred as clump rot disease, caused by pathogen trio P , vexans, $R.$ solani and $F.$ oxysporum. The disease is a serious menace to cultivation of small cardamom in tropics. At present, the disease is controlled by drenching huge quantity of pesticides before and after the onset of the monsoon. Alternatively, the use of fungal endophytes can be a remedy for the disease and also biologically safe.

Endophytes are well thought-out as plant mutualists, as they obtain nourishment and security from the host plant, while the host gets benefit from improved cut-throat abilities and augmented confrontation to various biotic and abiotic stresses (Saikkonen et al., 1998). An attempt was made to isolate the endosymbiotic fungi associated with wild genera of cardamom, namely, Aframomum melegueta (Ame), Amomum subulatum (Asu) and Hedychium coronarium (Hco). Isolation of endophytic fungi was carried out from leaves, petiole, stem, root and rhizomes of these species and characterized. Totally 17 isolates of endosymbiotic fungi were isolated from the three allied genera of cardamom and grown in PDA medium. Greyish white coloured colonies were observed in the isolates $AsuLV1$, AsuLV2, AsuL2 and AsuL4. Grey coloured colonies were observed in AsuLV3, AmePe2, white coloured colonies were observed in AsuL2, HcoL2, AmeL, AseLV, AmePe1 and Ame R1, while brown an brownish orange coloured colonies were observed in AmeR2 and AmePs, respectively.

Variations were observed in substrate colour, three isolates (AsuLV1, HcoL1, AmeL) were cream coloured, brown to browish yellow coloured substrates were observed in isolates. AsuLV3, AsuL5 and AmeR2. Margins of isolates also showed variations, four isolates were irregular and other were regular and mixed reaction of wavy and smoothness were also seen. Considering the topography, 11 isolates were raised and fluffy, five isolates were flat, one

isolate (AmePS) was raised and cottony and one (AseLV) was powdery.

Clear zonation was noticed only in AmeL isolate, with regard to pigmentation, seven isolates showed characteristic pigmentation (Table 1, Fig. I). Maximum colony diameter (90 cm) was observed in eleven isolates on seventh day after sub-culturing. Colony appearance, colony growth rate and colony morphology are important traits for identification and characterization of fungi (Prema et al., 2011). There was wide variation in the colony characters viz., colour, topography, pigmentation, zonation, sporulation and mycelial growth of different isolates in PDA media. In the present study, isolates were characterized by blackish white, grey and white coloured colonies. Margins were smooth as well as irregular, all the isolates differed with respect to sporulation, pigmentation, margin and topography. Lu et al. (2012) characterized the endophytic fungi isolated from Chinese medicinal plant Actinidia and identified based on moprhological and cultural characters.

AsutV2 AsuLV3 AsuL₂

Hcol⁻

Ame LV Ame Pe1 Ame Pe₂

Fig. 1. Cultural characters of endophytic isolates from wild relatives of small cardamom

The results of *in vitro* antagonistic activity of endosymbionts against mycelial growth of *P. vexans* revealed that AsuL4 isolate significantly reduced the mycelial growth of *P. vexans* with mean mycelial growth of 21.3 mm accounting for 72.4 per cent inhibition over control. It was followed by HcoLi with a mean mycelial growth of 30.7 mm and 60.3

AsuL4 **Hcol.1 AsuPe1** Fig. 2. *In vitro* antagonistic activity of endophytes against *Pythium* vexans

per cent inhibition over control. Least inhibition of 28.0 per cent was recorded in AsuPe1 with the mycelial growth of 55.7 mm (Table 2; Fig. 2).

Similarly, in vitro efficacy of endosymbionts against the mycelial growth of *R. solani* revealed that the isolate AmeR2 significantly recorded higher inhibition of 65.3 per cent, followed by HcoL1 recording 55.1 per cent inhibition over control. The lowest inhibition was recorded by AsuL3 with a mycelial growth and per cent inhibition of 67 .0 mm and 10.7, respectively (Table 3; Fig. 3).

The result of in vitro efficacy of endosymbionts against mycelial growth of F. oxysporum showed that among the 17 isolates tested for mycelial

Values followed by the same alphabet do not differ significantly

Ame R₂ HcoL1 AsuL₃ Control Fig. 3. *In vitro* antagonistic activity of endophytes against $R.$ solani

inhibition, the isolate AsuLV3 recorded significantly higher inhibition of 73.8 per cent over control, followed by AsuL4 with 69.9 per cent inhibition over control. The isolate AmeP2 recorded the lowest per cent inhibition (40.6) (Table 4; Fig. 4). Very few studies in endophytes from the wild relatives of cultivated crops have been isolated, characterized

Table 3. In vitro antagonistic activity of endosymbionts against *R. solani*

Sl. No.	Isolate	Growth of pathogen (mm)	Percentage inhibition over control	Growth of endophyte (mm)	Interaction type
	AsuLV1	52.3	30.2^{1}	13.3	Overlapping
2.	AsuLV2	48.3	35.6 fghi	14.3	Overlapping
3.	AsuLV3	49.0	34.7 ghi	11.3	Overlapping
4.	AsuL ₂	45.0	40.0 rfg	16.7	Overlapping
5.	AsuL3	67.0	10.7 ^k	3.0	Overlapping
6.	AsuL ₄	38.7	48.4 cd	22.0	Inhibition zone
7.	AsuL ₅	43.0	42.7 de	19.3	Overlapping
8.	AsuPe1	44.3	40.9 ^{ef}	15.7	Overlapping
9.	HcoL1	33.7	55.1 ^b	18.7	Inhibition zone
10.	HcoL ₂	46.0	38.7 efgh	15.7	Overlapping
11.	Ame L	45.0	40.0 ^{hi}	18.7	Overlapping
12.	Ame LV	50.3	32.9efgh	18.0	Overlapping
13.	Ame Pel	46.3	38.1 bc	17.3	Overlapping
14.	Ame Pe ₂	36.3	51.5	20.7	Overlapping
15.	Ame Ps	61.7	17.8	9.3	Inhibition
16.	Ame R1	45.0	40.0 efg	12.3	Inhibition
17.	Ame R ₂	26.0	65.3^{a}	28.7	Inhibition
18.	Control	75.0	0.0		

Values followed by the same alphabet do not differ significantly

4

Faisal et al.

Table 4. In vitro antagonistic activity of endosymbionts against F. oxysporum

Sl. No.	Isolate	Growth of pathogen (mm)	Percentage inhibition over control	Growth of endophyte (mm)	Interaction type
1.	AsuLV1	42.0	45.0 ^{hi}	24.7	Overlapping
2.	AsuLV ₂	36.7	52.0 efgh	30.3	Overlapping
3.	AsuLV3	20.0	73.8 ^a	45.3	Overlapping
4.	AsuL ₂	28.0	63.3 bcd	35.3	Overlapping
5.	AsuL ₃	30.3	60.3 cde	37.0	Overlapping
6.	AsuL ₄	23.0	69.9 ^{ab}	34.3	Inhibition zone
7.	AsuL ₅	37.3	51.1 fgh	38.0	Overlapping
8.	AsuPel	25.0	67.2 abc	22.7	Overlapping
9.	HcoL1	42.0	45.0 hi	34.0	Inhibition zone
10.	HcoL ₂	32.7	57.2 def	34.3	Overlapping
11.	Ame L	36.0	52.8efgh	30.0	Inhibition
12.	Ame LV	32.0	58.1 def	31.0	Overlapping
13.	Ame Pel	35.0	54.1 efg	23.3	Inhibition
14.	Ame Pe ₂	45.3	40.6 ¹	21.0	Overlapping
15.	Ame Ps	41.3	45.9 egi	26.0	Inhibition
16.	Ame R1	34.0	55.5 def	25.0	Inhibition
17.	Ame R ₂	23.3	69.4 ^{ab}	69.0	Overlapping
18.	Control	76.3	0.0		

6

Values followed by the same alphabet do not differ significantly

and evaluated against plant pathogens, their efficacy against pathogens operates through various mechanisms. Yue et al. (2000) identified several derivatives of indole, terpene, and amide from *Epichloe festucae*, however, the inhibition of pathogens in vitro and disease resistance exhibited in vivo could not be linked clearly. Turf grasses, which had E. festucae as an endophtye, showed considerable confrontation over turf grasses which did not harbour E. festucae, to leaf spot pathogens Sclerotina homeocarpa (Clarke et al., 2006) and Laetisaria fusiformis (Bonos et al., 2005). Still, the mystery is unsloved that the mechanism of enhanced disease confrontation with the presence of certain endophytes, is associated with antimicrobial compounds produced by the endophyte or by physical exclusion mechanism or by competition or combination of all these mechanisms, in order to ward off the pathogen.

Fig. 4. In vitro antagonistic activity of endophytes against F. oxysporum

References

- Barrett, L.G. and Heil, M. 2012. Unifying concepts and mechanisms in the specificity of plant enemy interactions. Trends in Plant Sciences 17: 282-292.
- Bonos, S.A., Wilson, M.M., Meyer, W.A. and Funk, C.R. 2005. Suppression of red thread in fine fescues through endophyte-mediated resistance. Applied Turfgrass Science 10:1094.
- Clarke, B.B., White, J.F.J., Hurley, R.H., Torres, M.S., Sun, S. and Huff, D.R. 2006. Endophyte-mediated suppression of dollar spot disease in fine fescues. Plant Disease 90: 994-998.
- Dennis, C. and Webster, J. 1971. Antagonistic properties of species groups of *Trichoderma* production of non-volatile antibiotics. Transactions of British Mycological Society 57: 25-39.
- Glenn, A.E., Bacon, C.W., Price, R. and Hanlin, R.T. 1996. Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88: 369-383.
- Heil, M. 2008. Indirect defence via tritrophic interactions. New Phytologist 178: 41-61.
- Lu, Y., Chen, C., Chen, H., Zhang, J. and Chen, W. 2012. Isolation and identification of endophytic fungi from Actinidia macrosperma and investigation of their bio-activities. Evidence-Based Complementary and Alternative Medicine. doi:10.1155/2012/382742.
- Marshall, D., Tunali, B. and Nelson, L.R. 1999. Occurrence of fungal endophytes in species of wild Tritici. Crop Science 39: 1507-1512.

Fungal endophytes against rhizome rot of cardamom

- Mousa, W.K., Shearer, C.R., Limay-Rios, V., Zhou. T. and Raizada, M. 2015. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation. Frontiers in Plant Science http://dx.doi.org/10.3389/fpls.2015.00805.
- Prema, R.T., Prabakar, K., Faisal, M.P., Kathikeyan, G. and Raguchander, T. 2011. Morphological and physiological characterization of Colletotrichum musae, the causal organism of banana anthracnose. World Journal of Agricultural Science 7(6): 743-754.
- Saikkonen, K., Faeth, S.H., Helander, M. and Sullivan, T.J. 1998. Fungal endophytes: A continuum of interactions with host plants. Annual Review of Ecology and Systematics 29: 319-343.
- Thomas, J., Naidu, R. and Bhai, R.S. 1988. Rhizome and root rot disease of cardamom- A review. Journal of Coffee Research 18 (Suppl.) 38-45.

 7

- Unterseher, M. and Schnittler, M. 2009. Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.) - Different cultivation techniques influence fungal biodiversity assessment. Mycological Research 113: 645-654.
- Vijayan, A.K. and Thomas, J. 2002. Integrated management of rhizome rot of small cardamom using Trichoderma. In: Proceedings of the 15th Plantation Crops Symposium. PLACROSYM XV, Mysore, 10-13 December 2002. (Eds.) Sreedharan, K., Vinod Kumar, P.K., Jayarama and Chulaki B.M. Indian Society for Plantation Crops. Kasaragod.
- Yue, C., Miller, C.J., White, J.F.J. and Richardson, M. 2000. Isolation and characterization of fungal inhibitors from Epichloe festucae. Journal Agricultural and Food Chemistry 48: 4687-4692.