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Abstract Zingiber zerumbet, a perennial rhizomatous

herb exhibits remarkable disease resistance as well as a

wide range of pharmacological activities. Towards char-

acterizing the endophytic population of Z. zerumbet rhi-

zomes, experiments were carried out during two different

growing seasons viz., early-June of 2013 and late-July of

2014. A total of 34 endophytes were isolated and catego-

rized into 11 morphologically distinct groups. Fungi were

observed to predominate bacterial species with coloniza-

tion frequency values ranging from 12.5 to 50 %. Among

the 11 endophyte groups isolated, molecular analyses based

on ITS/16S rRNA gene sequences identified seven isolate

groups as Fusarium solani, two as F. oxysporum and one as

the bacterium Rhizobium spp. Phylogenetic tree clustered

the ITS sequences from Z. zerumbet endophytes into dis-

tinct clades consistent with morphological and sequence

analysis. Dual culture assays were carried out to determine

antagonistic activity of the isolated endophytes against

Pythium myriotylum, an economically significant soil-

borne phytopathogen of cultivated ginger. Experiments

revealed significant P. myriotylum growth inhibition by

F. solani and F. oxysporum isolates with percentage of

inhibition (PoI) ranging from 45.17 ± 0.29 to 62.2 ± 2.58

with F. oxysporum exhibiting higher PoI values against

P. myriotylum. Using ZzEF8 metabolite extract, concen-

tration-dependent P. myriotylum hyphal growth inhibition

was observed following radial diffusion assays. These

observations were confirmed by scanning electron micro-

scopy analysis wherein exposure to ZzEF8 metabolite

extract induced hyphal deformities. Results indicate

Z. zerumbet endophytes as promising resources for bio-

logically active compounds and as biocontrol agents for

soft rot disease management caused by Pythium spp.

Keywords Zingiber zerumbet � Endophyte � Soft-rot
disease � Bioactivity � Fusarium spp.

Introduction

Zingiber zerumbet (Family Zingiberaceae) is a perennial

rhizomatous herb found either in cultivated, wild or natu-

ralized states (CABI 2014) throughout Southeast Asia,

Pacific and Oceania (Yob et al. 2011) with a wide range of

ethnomedicinal uses (Vimala et al. 1999; Tushar et al.

2010; Sulaiman et al. 2010; Yob et al. 2011). Among the

sixty-nine constituents identified in essential oil from the

rhizome, leaves and flowers of Z. zerumbet, the sesquiter-

penoid zerumbone is the active principle (Dev 1960;

Damodaran and Dev 1968; Ruslay et al. 2007) that con-

tributes to its diverse pharmacological properties (Mu-

rakami et al. 2002; Yob et al. 2011; Singh et al. 2012). In

plants, asymptomatic endophytic assemblages have been

identified as important components of plant micro-

ecosystem (Zhang et al. 2006; Aly et al. 2011). Endophytic

assemblages in various plant taxa are known to be influ-

enced by geographic/edaphic and environmental factors

(Arnold and Herre 2003; Owen and Hundley 2004; Kusari

et al. 2013; U’ren et al. 2012; Zimmerman and Vitousek

2012). Endophytes involved in such mutualistic associa-

tions have received significant attention due to their

importance as novel resources for bioactive secondary
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metabolites with potential applications in pharmaceutical,

agriculture and food industry (Strobel 2003; Qin et al.

2011; Aly et al. 2011; Gutierrez et al. 2012). Besides being

important sources of bioactive compounds, endophytes are

also known to promote growth of the host plant (Sturz et al.

1997; Surette et al. 2003; Hasegawa et al. 2006; Meguro

et al. 2006; Gibert et al. 2012) by nutrient assimilation and

phytohormone production (Tan and Zou 2001) and provide

tolerance/resistance to abiotic and biotic stress (Chen et al.

1995; Sturz and Matheson 1996; Hallmann et al. 1997;

Buchenauer 1998; Shimizu et al. 2000; Rodriguez and

Redman 2008; Hasegawa et al. 2006; Conn et al. 2008).

Endophytes have also been identified as useful biocon-

trol agents (Kunoh 2002; Backman and Sikora 2008)

inhibiting phytopathogenic growth as observed in cotton

against pathogenic Fusarium oxysporum subsp. vasinfec-

tum and in potato against Verticillium albo-atrum, Rhi-

zoctonia solani (Hallmann et al. 1997) and Clavibacter

michiganensis subsp. sepedonicum (van Buren et al. 1993).

Antagonistic activities of endophytes against phy-

topathogens are mediated by mechanisms that include

antibiosis, induced systemic resistance, competition for

niches and nutrition or predation and parasitism (Arnold

et al. 2003; Schulz and Boyle 2005; Conn et al. 2008;

Rodriguez et al. 2009; Aly et al. 2011; White and Bacon

2012). Z. zerumbet has been previously documented to

exhibit resistance to necrotrophic oomycetous Pythium

spp., the causative agent of soft-rot disease (Kavitha and

Thomas 2007) manifested as water-soaked and putrefied

rhizomes. Our previous studies have demonstrated the

significant role of zerumbone, the active principle in

Z. zerumbet in imparting resistance to soft-rot causative

P. myriotylum. Besides no major diseases have so far been

reported in the wild taxa except for reports indicating the

taxa serving as a minor host for the spiraled whitefly,

Aleurodicus disperses and cardamom root grub, Basilepta

fulvicornis (CABI 2014). Despite the remarkable resistance

exhibited by Z. zerumbet, obscure information is available

on the endophytic micro-biota of the taxon. Hence the

present study was undertaken towards (1) bioprospecting

the endophytic assemblage of Z. zerumbet rhizomes and (2)

determining its biological control potential against soft rot

causative P. myriotylum strain.

Materials and methods

Sample collection and preparation

Healthy Z. zerumbet rhizomes devoid of any external

lesions were collected from Indian Institute of Spices

Research (IISR), Calicut, India. Rhizome samples (5–6

intact rhizomes) were collected at two different times of

growing season viz., during early-June of 2013 and late-

July of 2014. The collected rhizomes were thoroughly

washed under running water for an hour to remove all soil.

Rhizomes were surface-sterilized by sequential washes in

20 % sterilisation solution (5 % sodium hypochlorite and

0.01 % Tween 20), twice with 70 % ethanol for one minute

followed by 0.1 % mercuric chloride for 8 min. Finally

traces of sterilizing agents were removed by washing the

tissues with sterile water six times for 5 min each. The

water obtained from last wash was plated on potato dex-

trose agar (PDA) to ensure complete surface sterilization.

Isolation of endophytes

The surface sterilised rhizomes were used for isolation of

Z. zerumbet endophytes. Rhizome pieces were placed on

fresh sterile PDA (pH 6.4) plates supplemented with

60 mg/ml ampicillin and incubated at 25 ± 3 �C for

7 days for growth initiation. Fungal isolates growing out of

the rhizome pieces were sub-cultured onto the same med-

ium while the bacterial isolate obtained were grown in

Luria–Bertani (LB) medium without the antibiotic. Purified

isolates thus obtained were assigned codes and maintained

in their vegetative form in PDA/LB plates and as stock

cultures in glycerol suspensions (50 % w/v) at -80 �C.

Morphology of Z. zerumbet endophytes

Morphological characteristics were determined after incu-

bation for 14 days at 25 ± 3 �C on PDA/LB medium.

Designations of colony colors were made by comparing

with color charts of Inter-Society Colour Council-National

Bureau of Standards (ISCC–NBS) (Kelly 1964). Micro-

scopic morphological characters were determined using

bright field trinocular research microscope (Olympus

BX51) and included characteristics such as size/shape of

conidia and mycelia septation which were used as classic

confirmatory characters to identify fungal isolates accord-

ing to standard taxonomic key (Ainsworth et al. 1973). For

bacterial isolate, the following traits were evaluated: color,

surface, margin, opacity, gram staining, motility and spore

formation.

Colonization frequency (CF %) of endophytes was cal-

culated as: CF = (Ncol/Nt) 9 100, where Ncol and Nt are

the number of segments colonized by each endophyte and

the total number of segments observed respectively (Hata

and Futai 1995).

DNA extraction and isolation

Genomic DNA was isolated from actively growing myce-

lium scraped from PDA plates and from LB bacterial

culture using modified Cetyltrimethyl ammonium bromide
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(CTAB) procedure (Rogers and Bendich 1994). Briefly

mycelium ground in liquid nitrogen and the bacterial sus-

pensions were transferred to pre-warmed CTAB buffer and

incubated for 1 h at 65 �C. Homogenate was extracted

thrice with chloroform- isoamyl alcohol (24:1) and cen-

trifuged at 14,000 rpm for 15 min. The extract was treated

with RNase (20 mg/ml) and incubated for 45 min at 37 �C.
From the clear RNA free supernatant, DNA was precipi-

tated using two volumes of ice-cold isopropanol and

incubated overnight at 4 �C. Precipitated samples were

centrifuged and the DNA pellet was rinsed with 70 % (v/v)

ethanol, air dried, dissolved in 0.1 M TE (Tris–EDTA; pH

8.0) buffer and stored at -20 �C for further use.

PCR amplification

The internal transcribed spacer (ITS) region of ribosomal

DNA was amplified using eukaryotic universal primers, ITS

1 (50-TCCGTAGGTGAACCTGCGG–30) and ITS 4

(50TCCTCCGCTTATTGATATGC–30). For identification

of bacterial isolate, 16S rDNA region was amplified using

universal primers, 16SrF (50-AGAGTTTGATCCTGGCT-
CAG-30) and 16SrR (50-GGTTACCTTGTTACGACTT-30).
Reaction mixture contained 10X PCR reaction buffer with

1.5 mM MgCl2, each dNTP at 10 mM concentration, pri-

mers at 10 pmol concentration, Taq DNA polymerase and

10 ng/ll DNA. Thermo-cycling was done in S1000 Thermal

cycler (Bio Rad, USA) and consisted of an initial denatu-

ration step at 94 �C for 3 min, followed by 35 amplification

cycles of 94 �C for 1 min, 55 �C for 1 min, 72 �C for 1 min

and a final 5 min extension at 72 �C. PCR products were

electrophoretically examined in 1.2 % agarose gel and the

amplicons were excised and purified using Wizard SV gel

and PCR Clean-up System (Promega, WI, USA) following

manufacturer’s instructions prior to sequencing.

Sequencing and phylogenetic analysis

Sequencing was performed on the Applied Biosystems

3730XL DNA Analyser. Sequence data were screened by

visual inspection of chromatograms using Chromas and the

primer sequences were removed. Sequences obtained were

subjected to homology searches using BLAST algorithm in

NCBI database (www.ncbi.nlm.nih.gov). The ITS sequen-

ces were subjected to multiple alignment with homologous

sequences using CLUSTAL W (Thompson et al. 1994).

Phylogenetic relationships of the isolated endophytes were

inferred using neighbour-joining (N-J) (Saitou and Nei

1987), maximum parsimony (MP) (Fitch 1971) and maxi-

mum likelihood (ML) (Felsenstein 1981) tree making

algorithms using Mega 5 software (Tamura et al. 2011).

Statistical validation at each node was determined by 1000

bootstrap replicates.

Determination of P. myriotylum antagonistic activity

Antagonistic activity of the endophytic strains against the

P. myriotylum was studied following dual culture assay

(Lahlali et al. 2007). Mycelial discs (5 mm diameter) from

7-day old cultures of each fungal endophyte and P. myri-

otylum were placed on opposite sides of the same PDA

plate. Control plate consisted of only the P. myriotylum

discs. Plates were incubated at 25 ± 3 �C for 7 days and

radial mycelial growth of each endophyte against the

pathogen was recorded. Percentage of inhibition (PoI) was

calculated as described by Rahman et al. (2009) as:

PoI = [(R1 - R2)/R1] 9 100, where R1 and R2 are radii

of fungal phytopathogen colony in control plate and test

plate respectively. All experiments were conducted in

triplicate.

Strain displaying highest anti-Pythium activity was

inoculated in potato dextrose (PD) medium for 14 days at

25 �C. After fermentation, the mycelial mat was harvested,

ground and extracted with absolute dichloromethane (DCM)

at room temperature for 24 h. The organic phase was con-

centrated on rotary evaporator (Heidolph, Germany) in

reduced pressure at 42 �C for 30 min. The obtained DCM

fractions were subject to bioassays for evaluating anti-

P. myriotylum activity by disc diffusion method. Briefly

mycelial disc (5 mm) from 7-day-old P. myriotylum culture

grown in PDA was placed on a Whatman No. 4 filter paper

disc (10 mm) impregnated with increasing dilutions of

extract (1–40 ll) in the center of PDA plates. In control

experiments, PDA discs were placed on a filter paper

impregnated with DCM. Plates were incubated at 25 �C for

4 days, and percentage inhibition was measured by com-

paring the mycelial growth in the test plate with that of

control plate. Growth inhibition was calculated using the

formula: [I % = (C - T) 9 C - 1] 9 100 where I % is the

relative inhibition, C is the control radial diameter of

P. myriotylum hyphae in presence of solvent and T is the

radial diameter of P. myriotylum hyphae in presence of

extract.

Scanning electron microscopy (SEM) analysis

P. myriotylum mycelium grown on polylysine-coated glass

cover slips was exposed to 5 lL of metabolite extract from

antagonistic endophyte for 2 h. Treated and untreated

mycelium was fixed with glutaraldehyde (2.5 % v/v) in

0.1 M phosphate buffer (pH 7.5) for 3 h at 25 �C. Fixation
was followed by washing with phosphate buffer (pH 7.5)

and dehydration with graded ethanol series (30, 50, 70, 90,

95 and 100 %) for 10 min in each series. The fixed samples

were mounted on stubs using double-sided carbon tape and

coated with gold using sputter coater system (E-1010 ion

sputter, Hitachi) for 30 s at 10–20 Pa vacuum and current
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density of 10 mA. SEM images were captured using

S06600SEM (Hitachi) at an accelerating voltage of 5 kV.

Results

Isolation and morphological characterization

of endophytes

Endophytes totalling 34 were collectively obtained from 10

asymptomatic 15 mm2 rhizome segments of Z. zerumbet.

The isolates were found to be dominated by fungi with only

one bacterial gram-negative strain. Preliminary grouping

according to morphological characteristics categorized the

34 endophytes to 11 groups (Table 1). Among the 11

morphologically distinct Z. zerumbet endophytes, ten were

fungi and one was a bacterium with CF (%) values ranging

from 12.5 to 50 % (Table 1). Two of the fungal groups

were observed to form purple mycelium on PDA medium

with good growth observed at 25 ± 3 �C (Fig. 1 C, D).

Molecular identification of Z. zerumbet endophytes

The amplified ITS/16S rDNA region of endophyte groups

were sequenced and homology searches using BLAST

algorithm revealed that of the 11 endophyte groups iso-

lated, seven showed C96 % similarity to Fusarium solani,

two isolate groups showed 99 and 100 % similarity to

F. oxysporum and one designated ZzEB1 to the bacterial

strain, Rhizobium spp. (99 % identity). Sequences with

e-value C0.0 and C96 % identity with the amplified ITS/

16S rRNA sequences of Z. zerumbet endophytes were used

for multiple alignment using CLUSTALX. Phylogenetic

analysis revealed two distinct clades representing F. solani

and F. oxysporum respectively (Fig. 2A). Among the

Fusarium homologous isolates ZzEF1–ZzEF6, ZzEF9 and

ZzEF10 clustered with F. solani while ZzEF7 and ZzEF8

clustered with F. oxysporum ITS sequences in the ML tree

(Fig. 2A). The ML based phylogenetic classification was

maintained in the trees generated using NJ and ME tree-

making algorithms. ML analysis of 6S rRNA sequences

from Rhizobium to related genera viz., Azorhizobium and

Bradyrhizobium clustered the bacterial endophyte desig-

nated ZzEB1 with Rhizobium spp. (Fig. 2B).

Bioactivity of Z. zerumbet endophytes against

P. myriotylum

Confrontation experiments or dual culture assays revealed

limited mycelial growth of P. myriotylum in presence of

Z. zerumbet fungal endophytes with PoI ranging from

7.01 ± 3.31 to 63.28 ± 2.53 % (Table 2). Among the ten

fungal isolates, six endophytes designated ZzEF2, ZzEF3,

ZzEF5, ZzEF6, ZzEF9 and ZzEF10 identified as F. solani

were able to inhibit P. myriotylum growth by PoI ranging

from 45.17 ± 0.29 by ZzEF3 to 54.41 ± 3.81 by ZzEF4.

Endophytes designated ZzEF7 and ZzEF8, representing

F. oxysporum isolates yielded high PoI values against

P.myriotylum of 63.28 ± 2.53 and 62.2 ± 2.58 respectively

(Table 2). To further evaluate inhibitory effect of endophyte

ZzEF8, metabolite was extracted from mycelium with DCM

which was observed to inhibit P. myriotylum hyphal growth

with the antagonistic activity observed to be concentration

dependent (Fig. 3A). SEM analysis was carried out to

examine the effect of ZzEF8 metabolite extract on surface

topography of P. myriotylum hyphae. Shrivelling and dis-

tortion of hyphae accompanied by collapse at various sites

was observed (Fig. 3C) compared to the linear hyphae with

homogenous width as seen in the control (Fig. 3B).

Discussion

The ubiquitous but selective colonization of endophytes in

plants prompted us to undertake the present novel attempt

towards characterization of endophytes from Z. zerumbet

rhizomes that has a broad spectrum of pharmacological

activities besides exhibiting remarkable disease resistance

(Kavitha and Thomas 2007; Aswati and Thomas 2007;

CABI 2014). Except for Z. officinale (Jasim et al. 2014), no

Zingiber taxa have been investigated so far for their

endophytic assemblage despite their ethnomedicinal sig-

nificance. Higher endophyte density is reported in many

taxa in the roots/rhizomes and decreases acropetally

(McInroy and Kloepper 1995; Quadt-Hallmann et al.

1997). The low rate of colonization constituting 11 endo-

phyte groups isolated in the present study may be attributed

to the spectrum of secondary metabolites with anti-micro-

bial properties produced in the rhizomes (Yob et al. 2011;

Singh et al. 2012; Ruslay et al. 2007). Similar low endo-

phyte frequency was also reported in other medicinal plants

with 9 isolates from Dioscorea zingiberensis rhizomes (Xu

et al. 2008), 16 isolates each from Coffea robusta (Sette

et al. 2006) and Argyrosomus argentatus (Liu et al. 2005).

Such low endophyte densities obtained could also be

attributed to the concentration and incubation time of dis-

infection process (Hallmann et al. 1997).

Based on morphological and phylogenetic analysis of

ITS/16S rRNA sequences, the most frequent fungal endo-

phyte colonizing Z. zerumbet was identified as Fusarium

spp., which also happens to be a major pathogen affecting

ginger (Z. officinale) productivity. Despite the

pathogenicity of Fusarium spp., it has been reported to

exist in symbiotic association in many plant taxa (Shiono

et al. 2007a, b; Kaur et al. 2010) and is used as a biocontrol

agent against various phytopathogens (Ghini et al. 2000;
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Kaur et al. 2010) that includes burrowing nematode and

banana weevil (Paparu et al. 2009) of banana, Fusarium

wilt disease (Nel et al. 2006) of banana and cucumber

(Mandeel and Baker 1991). Fusarium spp. has been pre-

viously reported as endophyte colonizing different medic-

inal plant taxa with various bioactivities (Shiono et al.

2007a, b) such as Camptotheca acuminata (Ding et al.

2013), Taxus baccata (Tayung et al. 2011), T. chinensis

(Deng et al. 2009), T. celebica (Chakravarthi et al. 2008),

Juniperus recurva (Kour et al. 2008) and Dysoxylum

binectariferum (Mohana Kumara et al. 2012). Earlier

studies have reported phytopathogenic species as prevalent

endophytes colonizing various plants such as Col-

letotrichum spp. in Artimisia spp. (Huang et al. 2009) and

Jatropha curcas, Erwinia spp. in cotton (Misaghi and

Donndelinger 1990), Xanthomonas spp. in pepper (Bashan

et al. 1982) and Pseudomonas spp. in olive (Gómez-Lama

Cabanás et al. 2014). Accumulating body of evidence

suggests that pathogenic endophytes have been horizon-

tally (Rodriguez et al. 2009) or vertically (Cook et al. 2013;

Hodgson et al. 2014) transmitted and play an important

role in plant defense (Arnold et al. 2003; Jaber and Vidal

2010; Gange et al. 2012) according to tenets of mutualism

theory (Arnold et al. 2003; Rodriguez et al. 2009; White

and Bacon 2012). Mutualistic existence of endophytes

profoundly influence host plant fitness (Brundrett 2006) by

contributing towards nutrition/growth and defense with the

latter function underpinning the ‘‘defensive mutualism’’

concept (DMC) (Clay 1988; Saikkonen et al. 2010;

Panaccione et al. 2014) and provides explanation for

widespread occurrence of systemic endophytes in various

plant taxa. The bacterial endophytic genera identified from

Z. zerumbet rhizomes viz., Rhizobium spp. have been

reported to exist in symbiotic association especially in

legumes (Dudeja et al. 2012) and also in various plant taxa

(Gutiérrez-Zamora and Martínez-Romero 2001).

Present study also reports for the first time the antago-

nistic activity of Fusarium spp. and other endophyte iso-

lates from Z. zerumbet rhizomes against P. myriotylum.

Z. zerumbet endophytes, ZzEF7 and ZzEF8 identified as

F. oxysporum exhibited potent anti-Pythium activity in dual

culture assays and were observed to produce a red-colored

Fig. 1 Anti-Pythium activity determined by dual-culture bioassay of four representative endophytes isolated from Z. zerumbet rhizomes.

A ZzEF4; B ZzEF6; C ZzEF7 and D ZzEF8
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metabolite. Antagonistic activity exhibited by the isolated

endophytes could be attributed to the production of

bioactive metabolites as reported for endophytes isolated

from other taxa (Castillo et al. 2002; Thongchai et al. 2003;

Taechowisan et al. 2005). Even though Fusarium species

possess the genetic potential to produce diverse secondary

metabolites in aerial hyphae such as trichothecenes and

napthaquinones (Greenhalgh et al. 1989), discontinuous

distribution of biosynthetic genes account for differences in

genetic potential of species to produce particular secondary

metabolites (Ma et al. 2010, 2013). Production of these

metabolites is also reported to be influenced by environ-

mental factors and is strain and culture-condition depen-

dent (Nesic et al. 2014). Wide ranges of biological

activities are attributed to Fusarium derived trichothecenes

and napthaquinones metabolites (Greenhalgh et al. 1989;

Parisot et al. 1990; Brown and Proctor 2013; Nesic et al.

2014). However limited/no information is available till

date on the antagonistic effect of Fusarium metabolite

against economically significant oomycetous P. myrioty-

lum. In this scenario, the identified isolates constitute

promising resources for bioactive compounds with potent

Fig. 2 Maximum likelihood tree based on ITS/ 16S rRNA gene

sequences showing the relationship between Z. zerumbet A fungal

(ZzEF1–ZzEF10) and B bacterial (ZzEB1) endophytes and other

related microbial taxa. Z. zerumbet endophytes are indicated by

prefixing with r (filled diamond). The species origin with Genbank

Accession Number of microbial sequences used for phylogenetic

analysis are given at the end of each node. Numbers at nodes indicate

bootstrap values (above 50 %) obtained from 1000 replications

Table 2 Antagonistic activity

of endophytes isolated from

Z. zerumbet rhizomes against

P. myriotylum deteremined by

dual culture assay

S. No. Endophyte isolates Percentage of inhibition (PoI; %) Scale of antagonistic activity

1 ZzEF1 52.5 ± 1.25 3

2 ZzEF2 46.58 ± 2.67 2

3 ZzEF3 45.17 ± 0.29 2

4 ZzEF4 54.41 ± 3.81 3

5 ZzEF5 52.92 ± 1.17 3

6 ZzEF6 54.37 ± 2.65 3

7 ZzEF7 63.28 ± 2.53 4

8 ZzEF8 62.2 ± 2.58 4

9 ZzEF9 49.36 ± 3.40 2

10 ZzEF10 52.44 ± 2.41 3

11 ZzEB1 7.01 ± 3.31 1

Values are mean ± SE of three replications. The antagonistic activity was estimated on a 4-point scale

based on PoI (%) values as: 1—Low antagonistic activity (\39); 2—Moderate antagonistic activity

(40–49); 3—High antagonistic activity (50–59) and 4—Very high antagonistic activity ([60)
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anti-Pythium activity as evidenced in SEM analysis

wherein hyphal deformities and collapse was observed

following exposure to ZzEF8 metabolite. These morpho-

logical changes could be attributed to alterations in hyphal

membrane permeability causing osmotic imbalances and

leading to its antibiosis activity. Further investigations will

be carried out in future to isolate and elucidate the active

metabolite(s) for future development of sustainable alter-

natives to non-specific chemical fertilizers.

Conclusions

Endophytic fungi have gained significant importance as

biocontrol agents for sustainable agricultural systems and

are preferable over non-specific chemical fertilizers and

pesticides due to low cost, effectiveness and environment

friendly attributes. The identified endophytes obtained

from the medicinally important and soft-rot resistant

Z. zerumbet can thus be developed in future for control of

Pythium spp. and constitute potentially important resource

for exploring novel bioactive compounds.
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