# Druggability of lead compounds from turmeric (Curcuma longa)

M. WILSON, S. BALAJI and S. J. EAPEN\*

Bioinformatics Centre, Indian Institute of Spices Research, Calicut – 673 012, Kerala, India Received 21st January, 2006

#### ABSTRACT

Curcumin (diferuloylmethane), the main bioactive component of turmeric, has been proved to have a wide spectrum of biological actions through several pharmacological studies. However, cheminformatics approaches are seldom used in these studies. In silico approaches can help in identifying better drug candidates that are safe, besides cutting down the high costs. In this study, in silico tools were applied to chemical compounds in turmeric for the first time to predict their biological activities and druggability. The druggability of these compounds was checked by using the Lipinski's scoring functions such as Log P, molecular weight, number of hydrogen bond donors and number of hydrogen bond acceptors. The results of these in silico studies indicate that, in contrast to curcumin, several other compounds in turmeric exhibit better activities which have to be confirmed by both pharmacological and clinical studies.

Key words: Druggability, turmeric, virtual screening, PASS prediction.

### INTRODUCTION

Turmeric (Curcuma domestica Syn., C. longa) is extensively used as a spice, food preservative and colouring material in India, China and South East Asia [4]. Traditionally many medicinal properties are attributed to this spice. Turmeric has been used since ancient times in Ayurveda, the age-old system of health care in India. For the last few decades, extensive work has been done to establish the biological activities of turmeric and its extracts. However, no druggability studies have been carried out on any compounds other than curcumin. Curcumin, a major chemical constituent of turmeric, has a wide spectrum of biological properties which have been compiled and reviewed by several workers [4]. Even though the crude extracts has numerous medicinal applications, clinical applications can be made only after extensive research on its bioactivity, mechanism of action, pharmacotherapeutics and toxicity studies.

Drug discovery projects experience very high failure rates. By going back to nature, one could overcome these failure rates and it is as an invaluable source of inspiration for

drug discovery. Scientific evidence underpins the pharmacological activity of several herbs which possess a number of novel therapeutic drug leads [3, 12]. The global market for herbal products may be around US\$5 trillion by 2050 [13]. The properties of drug-like molecules are well studied and cover a wide range of sizes and physicochemical properties [11, 18]. The slowness of conventional methods for investigation of plants limits enthusiasm in using them in the pharmaceutical industry [12]. Virtual screening is acknowledged as the initial means for identifying hit compounds that will be eventually transformed to leads or drug candidates [1, 16]. Structure information is increasingly used in the drug design process and has contributed significantly to the discovery of several marketed drugs [2, 6, 7, 14]. Furthermore, it is well known that in silico approaches are comparatively cheaper than in vivo and in vitro screenings.

Spices possess several efficacious compounds that are absorbed, distributed to the correct area, metabolized and excreted effectively. However, the cheminformatics approach is currently not employed in any of the spices to study the medicinal properties traditionally attributed to them. Such a study of active principles of spices may minimize the side-effects commonly seen with the drugs available in the market. In the present study, turmeric was taken as a model and different compounds in it were analyzed virtually using *in silico* tools to study their drug or lead-likeness. The results of this study will help chemists in prioritizing compound-selection depending on the nature of the application.

### MATERIALS AND METHODS

Structure collection and database screening

The structures of the chemical compounds from turmeric, collected from the NCI and the PubChem databases, are drawn using ACD/Chemsketch (Table 1). The structures were converted into SMILES notation to compare with the known active chemical compounds existing in the databases. This idea can be used for screening molecular databases for similar modes of actions on the one hand, or for screening one single compound for potential side-effects (reversed screening) on the other hand [9].

<sup>\*</sup> Author for Correspondence e-mail: sjeapen@spices.res.in

## 1. Structure and molecular formula of selected compounds from turmeric

| SN | Compound             | Molecular Formula                              | Structure                                         |
|----|----------------------|------------------------------------------------|---------------------------------------------------|
| 1  | 1,8 cineole          | C <sub>10</sub> H <sub>18</sub> O              |                                                   |
| 2  | Ascorbic acid        | C₀H <sub>8</sub> O <sub>6</sub>                | но он                                             |
| 3  | Borneol              | C <sub>10</sub> H <sub>18</sub> O              | CH <sub>3</sub> OH                                |
| 4  | Camphor              | C <sub>10</sub> H <sub>16</sub> O              | СН, О<br>Н, С – С – СН,                           |
| 5  | Cinnamic acid        | C <sub>9</sub> H <sub>8</sub> O <sub>2</sub>   | н н н о-н                                         |
| 6  | Curcumin             | $C_{21}H_{20}O_6$                              | HO OME CH=CH— C-CH <sub>2</sub> — C-CH=CH OME OME |
| 7  | Niacin               | C <sub>6</sub> H₅NO₂                           | $H \longrightarrow H$                             |
| 8  | P-Cymene             | C <sub>10</sub> H <sub>14</sub>                | CH <sub>3</sub>                                   |
| ,  | Bisdemethoxycurcumin | C <sub>19</sub> H <sub>16</sub> O <sub>4</sub> | "." " " " " " " " " " " " " " " " " " "           |

## Druggability check

The compounds were checked for their druggability using Lipinski's scoring functions [11]. The scoring function used to assess druggability of the compounds is shown in Table 2. The number of hydrogen bond donors refer to OH and NH groups, whereas hydrogen bond acceptors refer to O and N atoms according to Lipinski's definition; logP is the log of the octanol/water partition coefficient (including implicit hydrogen). LogP was chosen as a simple model for phospholipid-membrane. Its values represent the hydrophobic

If predicted activity (Pa) > 0.7, the substance is v likely to exhibit the activity in experiment and the chance the substance to be the analogue of a known pharmaceuti agent is also very high.

If 0.5<Pa<0.7, the substance is likely to exhibit activity in experiment and the probability is less, and substance is unlike to be a known pharmaceutical agent.

If Pa <0.5, the substance is unlikely to exhibit the activ in experiment. However, if the presence of this activity confirmed in the experiment, the substance might have a ne chemical activity.

Table 2. Lipinski's scoring function

| Property filters               | Definition | T 34: :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |
|--------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| No: of hydrogen bond donors    |            | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cut-off | Maximum |
|                                | Hdon       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5       | 6       |
| No: of hydrogen bond acceptors | Hacc       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10      | - 0     |
| Molecular Weight               |            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10      | 11      |
| Log P                          | MW         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500     | 600     |
|                                | xlogp      | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5       |         |
| Predicted activity             | Pa         | The state of the s | 3       | 6       |
|                                | га         | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7     | >0.7    |

binding of a drug to a receptor, its water solubility and permeability. However, it shows a serious shortcoming in predicting BBB (blood brain barrier) or skin penetration. Typical values range from -3 (very hydrophilic) to +7 (very hydrophobic) and most drugs have logP values in the range of 2-4. For example, the experimental logP values are: 2.0 (CNS penetration), 1.8 (oral absorption), 1.3 (intestinal absorption), 1.3 (colonic absorption), 5.5 (sub-lingual absorption), and 2.6 (percutaneous). Lipinski used Hansch and Leo's logP definition (ClogP-Daylight/Biobyte) which corresponds to a fragment-based method.

## Activity prediction

The compounds were also checked for their possible biological activities by using PASS (Prediction of Activity Spectra for Substances), which predicts more than 300 biological activities and biochemical mechanisms on the basis of the structural formula of a substance. This may be efficiently used to find new targets (mechanisms) for some ligands and conversely, to reveal new ligands for some biological targets. A www server for the online prediction of the biological activity spectra of substances has been used [8]. (Availability: http://www.ibmh.msk.su/PASS). The Biological Activity Spectrum (BAS) of a compound represents the complex of biological effects- physiological and biochemical mechanisms of action, specific toxicity (mutagenicity, carcinogenicity, teratogenicity and embryotoxicity) which can be revealed in compound's interaction with biological system.

#### Activity Scoring

The scoring functions used to check the biologically active substances are given below.

### RESULTS AND DISCUSSION

The results on screening the chemical compounds fo their druggability are shown in the Figure-1 (A and B). The log P comparisons among the selected compounds suggested that the compound p-cymene has a better log P (4.13) followed by bisdemethoxycurcumin and curcumin. It represents the hydrophobic binding of a drug to a receptor, its water solubility and permeability. The molecular weights of all compounds are between the acceptable ranges. Based on the Lipinski's rule for hydrogen bond donor property, among the nine selected compounds, ascorbic acid is having the highest number of Hbond donors (ie., four) while curcumin has only three H-bond donors. Among the nine selected compounds it is also noted that none of the compounds satisfied the cut-off value for Lipinski's hydrogen bond acceptor property. The results clearly indicated that in turmeric, none of the studied compounds are good candidates for developing drugs. Compared to curcumin, compounds like p-cymene, ascorbic acid and bisdemethoxycurcumin are better candidates.

The PASS analysis yielded 51 predicted activities for the selected nine compounds from turmeric (Table 3). Borneol and camphor have high analeptic activities, Pa 0.907 and 0.973, respectively. They also have the maximum respiratory analeptic activity (Pa 0.774 and 0.927, respectively). Borneol and camphor having Pa 0.72 and 0.717, respectively, can be used for prostatic (benign) hyperplasia treatment too. Choleretic activity was found better for 1, 8 cineole (Pa 0.94), in comparison with cinnamic acid (Pa 0.75) and curcumin (Pa 0.898). Convulsant activity was present in camphor (Pa 0.859) as well as p-cymene (Pa 0.743). They are also having high oxidoreductase inhibitor activity, Pa 0.702 and 0.741,

Table 3. List of PASS predicted biological activities for the druggable compounds from turmeric

|     | Biological activities                | 1,8 Cineole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ascorbic acid                | Boxueol | Сатрћог                                | Dios olmannio   | Cureumin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | niasiN | P-Cymene | Bisdesmethoxy           |
|-----|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------|----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-------------------------|
|     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |         | <pp></pp>                              | << Pa Values >> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *      |          |                         |
|     | Acute neurologic disorders treatment |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.722                        | •       | in e                                   | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                         |
| 2   | ADP ribose polymerase inhibitor      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second               |         | *                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.791  |          |                         |
| 3   | Analeptic                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | 206.0   | 0.973                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |          |                         |
| 4   | Analgesic                            | 0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |         | 73.                                    | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | -        | •                       |
| 5   | Analgesic, non-opioid                | 0.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                            |         |                                        |                 | 1. Sec. 1. Sec | 1      | 1        | 10000<br>10000<br>10000 |
| 9   | Anticataract                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.955                        | -       | •                                      | •               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 1        | 10                      |
| 7   | Antidyskinetic                       | 0.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              | •       |                                        | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | 1        |                         |
| ∞   | Antihypercholesterolemic             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | -       | 1                                      | •               | 0.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı      | Ī        | •                       |
| 6   | Antiinflammatory                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | •       |                                        | •               | 0.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •      |          | 0.927                   |
| 10  | Antiischemic                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 806.0                        | -       | estani                                 | -               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          | -                       |
| 11  | Antioxidant                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.891                        |         |                                        | -               | 0.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1      | •        | 1                       |
| 12  | Antitoxic                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                            | •       |                                        | -               | 0.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •      |          | •                       |
| 13  | Apoptosis agonist                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                            |         |                                        | 0.822           | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.732  | •        | 0.705                   |
| 14  | Arrhythmogenic                       | 908.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                            | •       | 0.911                                  | •               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |          |                         |
| 15  | Atherosclerosis treatment            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1       | 1                                      | •               | 0.704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •      | •        | 0.726                   |
| 16  | Cardiovascular analeptic             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | 0.927   | .e. († 1                               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.848  | -        | *                       |
| 17  | Choleretic                           | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | -       |                                        | 0.75            | 0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •      |          | -                       |
| 18  | Cholesterol antagonist               | 0.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                            |         | 200                                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |          |                         |
| 19  | Cholesterol synthesis inhibitor      | · Property of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | -       | ************************************** | 0.836           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -      | -        | 1                       |
| 20  | Convulsant                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | •       | 0.859                                  | -               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 0.743    | •                       |
| 100 |                                      | The state of the s | Spirit and Spirit Spirit and |         |                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |                         |

| 0.034   |       |   | - 0.806 |         | - 0.707 |   | - 0.79    | - 0.773   | - 0.724 | - 0.945 0.841                           | 702.0                                   |       | - 0.728                                     |                                                        |                                         | 0.74]                                    | 0.805                                    |                                                                                              | 0.717                                                                                  |                                                                                                                      | 0.808                                                                                                                      | 0.927                                                                                                          | 92                                                                                                                   | 0.807                                                                                                                            |                                                                      | 0.949 0.702                                                                                  | -                                                |
|---------|-------|---|---------|---------|---------|---|-----------|-----------|---------|-----------------------------------------|-----------------------------------------|-------|---------------------------------------------|--------------------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| •       |       |   |         | - 0.712 | - 0.707 |   | - 0.79    | - 0.773 - |         | 0.945                                   |                                         |       | - 0.728                                     |                                                        |                                         |                                          | a lite<br>sent                           |                                                                                              |                                                                                        |                                                                                                                      | •                                                                                                                          | 7000                                                                                                           | 92                                                                                                                   | 0.807                                                                                                                            |                                                                      |                                                                                              |                                                  |
| - 0.854 |       |   | - 0.806 |         | - 0.707 |   | • Vi      | - 0.773 - |         | 0.945                                   |                                         |       | - 0.728                                     |                                                        |                                         |                                          | a lite<br>sent                           |                                                                                              | 0.717                                                                                  |                                                                                                                      | - 086                                                                                                                      |                                                                                                                |                                                                                                                      | 0.807                                                                                                                            |                                                                      |                                                                                              |                                                  |
| 0.854   | -     |   | - 0.806 | 1       |         |   |           | - 0.773 - | 1       |                                         |                                         |       | - 0.728                                     |                                                        |                                         |                                          | a lite<br>sent                           |                                                                                              | 0.717                                                                                  | 1000                                                                                                                 |                                                                                                                            |                                                                                                                |                                                                                                                      | 0.807                                                                                                                            |                                                                      |                                                                                              |                                                  |
|         | -     |   |         | •       |         |   |           | - 0.773   | 1       | •                                       |                                         |       |                                             |                                                        | 0.702                                   |                                          | 0.805                                    |                                                                                              | 0.717                                                                                  |                                                                                                                      |                                                                                                                            | 0.927                                                                                                          | .65                                                                                                                  | 3.0                                                                                                                              |                                                                      | 0.9                                                                                          |                                                  |
|         | -     | - | •       | •       |         |   | •         | -         |         |                                         |                                         |       |                                             |                                                        | 0.                                      |                                          | 0.5                                      | 200                                                                                          | 0.7                                                                                    | 37                                                                                                                   | Title                                                                                                                      | 0.9                                                                                                            | 2                                                                                                                    |                                                                                                                                  | 800000                                                               | (S) 1                                                                                        |                                                  |
|         |       | • |         | 1       |         |   |           |           |         |                                         |                                         |       |                                             |                                                        | OF                                      |                                          | 7                                        |                                                                                              |                                                                                        |                                                                                                                      |                                                                                                                            | 9831<br>935                                                                                                    | 0.792                                                                                                                |                                                                                                                                  | 0.711                                                                |                                                                                              |                                                  |
|         | -     | - | •       | 1       | 180 C   |   |           | -         |         |                                         |                                         | T     |                                             |                                                        |                                         |                                          | 0.862                                    | •                                                                                            | 0.721                                                                                  |                                                                                                                      | •                                                                                                                          | 0.774                                                                                                          | -                                                                                                                    | 0.0                                                                                                                              | •                                                                    |                                                                                              | •                                                |
| 100     | +-    |   |         |         | 0.863   |   |           |           |         |                                         |                                         | 0.000 | 0.011                                       | 0.911                                                  | 1 2                                     | 0.741                                    | 0.172                                    | 0.705                                                                                        |                                                                                        |                                                                                                                      | 0.791                                                                                                                      |                                                                                                                | -                                                                                                                    |                                                                                                                                  |                                                                      | -                                                                                            |                                                  |
| 0.818   | 0.816 |   |         |         |         |   | •         |           |         | 1728                                    | 0.757                                   |       |                                             |                                                        | -                                       |                                          |                                          | •                                                                                            | •                                                                                      |                                                                                                                      | -                                                                                                                          |                                                                                                                |                                                                                                                      |                                                                                                                                  |                                                                      | - -                                                                                          | -                                                |
|         | +     |   |         |         | +       | 1 |           | 1         | 1       |                                         |                                         | +     | Ineuroprotector                             | Oxidoreductase inhibitor                               | Oxygen scavenger                        | Phosphatase inhibitor                    | Plasminogen activator stimulant          | Prostatic (benign) hyperplasia treatment                                                     | Pulmonary hypertension treatment                                                       | Reductant                                                                                                            | Respiratory analeptic                                                                                                      | RNA polymerase RNA directed inhibitor                                                                          | Sigma receptor agonist                                                                                               | Locolytic                                                                                                                        | Tyrosine phosphatase inhibitor                                       | Ulcerogenic                                                                                  | Vascular (periferal) disease treatment           |
|         |       |   |         |         |         |   | 8 8 8 8 8 | 8 8 5 8 6 | 222     | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2000  | 50 90 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 50 90 1 30 50 1 50 50 50 50 50 50 50 50 50 50 50 50 50 | 0 N N N N N N N N N N N N N N N N N N N | 20 0 N N N N N N N N N N N N N N N N N N | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 25<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 25<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27 | 25<br>26<br>27<br>27<br>27<br>27<br>28<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | 25<br>26<br>27<br>27<br>27<br>27<br>28<br>28<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | 25<br>26<br>27<br>27<br>27<br>27<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | 25<br>26<br>27<br>27<br>27<br>27<br>28<br>33<br>33<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 25<br>26<br>27<br>27<br>27<br>27<br>27<br>28<br>28<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | 25 26 26 27 27 27 27 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29 | 25<br>26<br>27<br>27<br>27<br>28<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29<br>29 | 25 25 27 26 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |

0.705



Fig. 1. Lipinski's druggability check in turmeric compounds A. Log P, Hydrogen bond donor and acceptor; B. Molecular Weight

espectively. Phosphatase inhibitor activities are common for scorbic acid (Pa 0.772), borneol (Pa 0.862), camphor (Pa 0.805) nd p-cymene (Pa 0.839). Tyrosine phosphatase inhibitor ctivity was found better for cinnamic acid (Pa 0.949) in omparison with curcumin (Pa 0.792). It is interesting to note anti-inflammatory activity is more for isdemethoxycurcumin (Pa 0.927) in comparison with curcumin Pa 0.719). This also correlates that bisdemethoxycurcumin is ne most active of the curcuminoids present in turmeric, in oncurrence with Limtrakul et al. [10]. In contrast to antiıflammatory activity, activities like apoptosis agonist is little reater for curcumin (Pa 0.8) rather than isdemethoxycurcumin (Pa 0.705). Besides curcumin, cinnamic cid and niacin also contributes apoptosis agonist activities 'a 0.822 and 0.732, respectively). It is also noted that cinnamic zid is having better membrane integrity agonist activity (Pa .945) in comparison with curcumin (Pa 0.841) and isdesmethoxycurcumin (Pa 0.712). Cinnamic acid and sdesmethoxycurcumin (Pa 0.713 and 0.705, respectively), in also be used for vascular (periferal) disease treatment. To immarize, the in silico analysis has indicated one or other ological properties for all the compounds included in the udy. The maximum (14) predicted activities were for curcumin

followed by cinnamic acid (12), ascorbic acid (11) and camphor (10). The lowest number (3) of activities was predicted for niacin. However, the predicted activities varied from compound to compound. It is clear that approaches used in the present study help in probing biological function in greater depth. Such an approach, sometimes, may throw light on new properties hitherto unknown for the compound as reported elsewhere [17]. A blend of these compounds as in Ayurveda may be a better option for general treatment instead of formulations based on single molecules.

In conclusion, the in silico analysis of druggability and activity of the lead compounds in turmeric suggests that, in contrast to curcumin, other compounds also exhibited better druggability as well as activities. So, our approach identified some druggable leads from turmeric other than the popular curcumin. For specific disorders, drugs based on corresponding compounds can be developed to avoid any non-target effects. The structural alterations of leads are also possible by introducing combinatorial chemistry approach. So the current study motivates and initiates the screening of a diverse array of chemical compounds in other spices for their druggability. This approach may bring the success of phytochemicals in the treatment of many diseases and disorders with minimal side effects. Minimizing unwanted activities is as important as enhancing desired ones in reducing lead optimization cycle times and increasing the rate of entry of drug candidates into human testing [15].

High throughput pharmacological screening (HTPS) can be applied to crude plant extracts to overcome the slowness encountered in conventional methods [12, 15]. Evaluation of species and environmental libraries of whole plants has demonstrated the value of this approach for rapid prioritization of plants for investigation [12]. In future too, computational (in silico) methods are certain to play an increasingly important role in drug discovery [5]. If traditional concepts like Ayurveda are blended with modern concepts like above, the failure rates faced in today's drug discovery projects can be brought down.

### ACKNOWLEDGEMENT

This work was supported by the Department of Biotechnology (DBT), New Delhi through an Ad hoc Project 'Distributed Information Sub-Centre' under the BTIS Net.

#### REFERENCES

- 1. Bajorath J. 2002. Integration of virtual and high-throughput screening. *Nature Rev Drug Discovery* 1: 882-894.
- Bohacek RS, McMartin C, Guida WC. 1996. The art and practice
  of structure-based drug design: a molecular modeling perspective.
  Med Res Rev 16: 3-50.
- Chang J 2000. Medicinal herbs: drugs or dietary supplements? Biochem Pharmacol 59: 211-219.

- Chattopadhyay I., Biswas K., Bandyopadhyay U, Bancrjee RK. 2004. Turmeric and curcumin: Biological actions and medicinal applications. Curr Sci 87: 44-53.
- Duckworth DM, Sanseau P. 2002. In silico identification of novel therapeutic targets, Drug Discovery Today 7: S64-S69.
- Hubbard RE. 1997. Can drugs be designed? Curr Opin Biotechnol
   696-700.
- Kubinyi H. 1998. Structure-based design of enzyme inhibitors and receptor ligands. Curr Opin Drug Discovery Dev 1: 4-15.
- Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. 2000. PASS: prediction of activity spectra for biologically active substances. *Bioinformatics* 16: 747-748.
- Langer T, Wolber G. 2004. Virtual combinatorial chemistry and in silico screening: Efficient tools for lead structure discovery? Pure Appl Chem 76: 991-996.
- Limtrakul P, Anuchapreeda S, Buddhasukh D. 2004. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids. BMC Cancer 4: 13.
- Lipinski CA. 2000. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44: 235-249.

- Littleton J, Rogers T, Falcone D. 2005. Novel approaplant drug discovery based on high throughput pharmacc screening and genetic manipulation. Life Sci 78: 467-47.
- Manju Sharma. 2000. Agricultural Biotechnology and th In India; Biotechnology Research and Develop Department of Biotechnology, Government of India, New pp 51-57.
- Murcko MA, Caron PR, Charifson PS. 1999. Structure drug design. Annu Rep Med Chem 34: 297-306.
- Russell RB, Eggleston DS. 2000. New roles for structure in b and drug discovery, Nature Struct Biol 7: 928-930.
- Sirois S, Hatzakis GE, Wei DQ, Du Q, Chou KC. 2005. Asses of chemical libraries for their druggability, Comput. Biol 29: 55-67.
- Varnek A, Solov'ev VP. 2005. "In Silico" Design of Pot Anti-HIV Actives Using Fragment Descriptors. Comb High Throughput Screening 8: 403-416.
- Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, K
   KD. 2002. Molecular properties that influence the bioavailability of drug candidates. J Med Chem 45: 2615-